Browsing by Author "Tamer Vestlund, Asli"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Characterisation and disersal of bioaerosols emitted from composting facilities(Cranfield University, 2009-07) Tamer Vestlund, Asli; Tyrrel, Sean; Drew, Gill H.The role of sustainable and natural waste management processes such as composting are increasingly becoming more important in tackling the current environmental challenge of the amount of waste that is being produced. However a potential risk of composting facilities is the release and dispersal of bioaerosols that might result in adverse health effects in sensitive receptors. Therefore, environmental regulators request regulatory risk assessments from composting facilities that are within 250m of sensitive receptors to assess the risk posed by bioaerosols. The prior art in compost related bioaerosol release and dispersal assessment is not extensive and gaps in the understanding of bioaerosols at source, on release from composting facilities and at receptor remain. Therefore, this research was undertaken to address some of these gaps in the current knowledge and to improve the understanding of the characterisation and dispersal of bioaerosols emitted from compost. Therefore firstly two studies were completed in regards to the characterisation of bioaerosols emitted from compost, in particular in improving the understanding of their aggregation and size distribution. In this context, a novel methodology (the compost tumbler) was developed to release and measure bioaerosols in experimental conditions. Data was generated using a combination of culturing and scanning electron microscopy methods to characterise the aggregation and size distribution of bioaerosols emitted from compost. Secondly, site work was conducted to validate the results of these controlled experiments and characterise the aggregation and size distribution of bioaerosols emitted from composting facilities. These controlled experiments and site work showed evidence of aggregation in bioaerosols released from compost. However, the majority of these bioaerosols were in single cell units hence they are more likely to be dispersed for longer distances. Following this, other studies were conducted in regards to the dispersal of bioaerosols emitted from compost, in particular in improving the understanding of bioaerosol concentration prediction by air dispersion modelling. Firstly preliminary air dispersion modelling was completed to assess the ability of a commercial air dispersion model,ADMS 3.3, to predict bioaerosol emissions from composting facilities compared to bioaerosol concentrations measured by on-site downwind bioaerosol sampling. Folowing this, the sensitivities of ADMS 3.3 were analysed and the effect of different modelling parameters on predicted bioaerosol concentrations were assessed. Finally, a final assessment of the potential of ADMS 3.3 to predict bioaerosol emissions from composting facilities was conducted. The overall results from the modelling studies indicated that ADMS 3.3 was not able to consistently predict absolute downwind bioaerosol concentrations at composting facilities. However it was also concluded that ADMS 3.3 can be a useful tool for the initial screening and assessing relative changes of bioaerosols at a compost facility, provided that the detailed assessment of absolute bioaerosol emissions are made in conjunction with measurement of downwind bioaerosol concentrations. The research presented in this thesis makes a significant contribution to knowledge in terms of improving the understanding of the characterisation and dispersal of bioaerosols emitted from composting facilities.Item Open Access Dispersion of bioaerosols from composting facilities.(2006-09-01T00:00:00Z) Drew, Gillian H.; Tamer Vestlund, Asli; Taha, M. P. M.; Smith, Richard; Longhurst, Philip J.; Kinnersley, R.; Pollard, Simon J. T.The promotion of composting as an option for sustainable waste management has raised concerns regarding public health impacts of exposures to potentially hazardous bioaerosols. Recent source term experiments show that bioaerosol emissions are episodic and that peak emissions are related to compost agitation. The Environment Agency requires risk assessments for facilities that have sensitive receptors within 250m of their boundary. In order to improve current risk assessment methodologies, improved predictions of bioaerosol dispersal are required. Dispersion modelling has been successfully used to determine dispersion of odours from waste management. In this paper, bioaerosol concentration data measured at a composting facility is analysed in an ongoing series of model experiments, using the ADMS air dispersion model. Initial modelling results reveal that the concentrations of bioaerosols decrease rapidly with distance from the site, although under certain circumstances, it is possible that higher concentrations may still be present at 200m from the site boundary. However, dispersion models are not yet able to take into account all the properties of bioaerosols, in particular, their viability and their ability to aggregate and form clumps, which will affect the rate of dispersal. A series of experiments were designed to examine how the options within dispersion model affect the dispersion of bioaerosols and under which circumstances high concentrations may disperse to sensitive receptors. The results will be compared with bioaerosol measurements taken downwind of a composting facility, to determine the accuracy of the model predictions. This is the first stage in an attempt to design a best practice method for modelling bioaerosols.Item Open Access Enumerating actinomycetes in compost bioaerosols at source—Use of soil compost agar to address plate ‘mask(2007-07-01T00:00:00Z) Taha, M. P. M.; Drew, Gillian H.; Tamer Vestlund, Asli; Aldred, David; Longhurst, Philip J.; Pollard, Simon J. T.Actinomycetes are the dominant bacteria isolated from bioaerosols sampled at composting facilities. Here, a novel method for the isolation of actinomycetes is reported, overcoming masking of conventional agar plates, as well as reducing analysis time and costs. Repeatable and reliable actinomycetes growth was best achieved using a soil compost media at an incubation temperature of 44 °C and 7 days’ incubation. The results are of particular value to waste management operators and their advisors undertaking regulatory risk assessments that support environmental approvals for compost facilitiItem Open Access Improving bioaerosol exposure assessments 1 - comparative modelling of 2 emissions from different compost ages and activities.(2007-07-01T00:00:00Z) Taha, M. P. M.; Drew, Gillian H.; Tamer Vestlund, Asli; Hewings, G.; Jordinson, G. M.; Longhurst, Philip J.; Pollard, Simon J. T.We present bioaerosol source term concentrations from passive and active composting sources and compare emissions from green waste compost aged 1, 2, 4, 6, 8, 12 and 16 weeks. Results reveal that the age of compost has little effect on the bioaerosol concentrations emitted for passive windrow sources. However emissions from turning compost during the early stages may be higher than during the later stages of the composting process. The bioaerosol emissions from passive sources were in the range of 103–104 cfu m−3, with releases from active sources typically 1-log higher. We propose improvements to current risk assessment methodologies by examining emission rates and the differences between two air dispersion models for the prediction of downwind bioaerosol concentrations at off-site points of exposure. The SCREEN3 model provides a more precautionary estimate of the source depletion curves of bioaerosol emissions in comparison to ADMS 3.3. The results from both models predict that bioaerosol concentrations decrease to below typical background concentrations before 250 m, the distance at which the regulator in England and Wales may require a risk assessment to be compleItem Open Access Morphological classification of bioaerosols from composting using scanning electron microscopy(2014-07-31T00:00:00Z) Tamer Vestlund, Asli; Al-Ashaab, R.; Tyrrel, Sean F.; Longhurst, Philip J.; Pollard, Simon J. T.; Drew, Gillian H.This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samples were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2-3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.Item Open Access Progress towards a best practice method for modelling dispersion of bioaerosols from composting facilities(2007-10-01T00:00:00Z) Drew, Gillian H.; Tamer Vestlund, Asli; Jordinson, G.; Taha, M. P. M.; Smith, Richard; Tyrrel, Sean F.; Longhurst, Philip J.; Pollard, Simon J. T.The promotion of composting in the UK as a sustainable waste management option has led to concerns regarding exposure of the public to potentially harmful emissions of airborne micro-organisms or bioaerosols. In response to public concerns, the Environment Agency in England and Wales requires a risk assessment for any licensed composting facility that has a sensitive receptor within 250m of the site boundary. An ongoing programme of studies in association with the Environment Agency has begun to explore methods to improve exposure assessments for bioaerosols. Our results have shown that is is possible to use air dispersion models for estimating downwind concentrations of bioaerosols, and the more advanced modelling options, such as the use of intermittent emission rates, result in lower downwind concentrations. Current risk assessments may be over-estimating the exposure of receptors to bioaerosols from composting, however further studies are needed to validate the results presented here. 1. INTRODUCTION The promotion of composting in the UK as a more sustainable waste management option has led to concerns regarding exposure of the public to potentially harmful emissions of airborne microorganisms or bioaerosols. The composting process is reliant on various micro-organisms, such as bacteria and fungi, to break down the organic matter. However, if as a result of composting operations these micro-organisms become airborne, may be breathed in, and due to their small size, can penetrate deep into the human respiratory system. Conditions such as farmer's lung disease and aspergillosis (Latgé, 1999) have been linked to high concentrations of bioaerosols, although dose-response relationships are not well defined. In response to public concerns, the Environment Agency in England and Wales requires a risk assessment for any licensed composting facility that has a sensitive receptor within 250m of the