CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sutherland, S."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Influence of granular activated carbon media properties on natural organic matter and disinfection by-product precursor removal from drinking water
    (Elsevier, 2020-05-01) Golea, D. M.; Jarvis, Peter; Jefferson, Bruce; Moore, Graeme; Sutherland, S.; Parsons, Simon A.; Judd, Simon J.
    Operational and financial constraints challenge effective removal of natural organic matter (NOM), and specifically disinfection by-product (DBP) precursors, at remote and/or small sites. Granular activated carbon (GAC) is a widely used treatment option for such locations, due to its relatively low maintenance and process operational simplicity. However, its efficacy is highly dependent on the media capacity for the organic matter, which in turn depends on the media characteristics. The influence of GAC media properties on NOM/DBP precursor removal has been studied using a range of established and emerging media using both batch adsorption tests and rapid small-scale column tests. DBP formation propensity (DBPFP) was measured with reference to trihalomethanes (THMs) and haloacetic acids (HAAs). All GAC media showed no selectivity for specific removal of precursors of regulated DBPs; DBP formation was a simple function of residual dissolved organic carbon (DOC) levels. UV254 was found to be a good surrogate measurement of DBPFP for an untreated water source having a high DOC. Due to the much-reduced concentration of DBP precursors, the correlation was significantly poorer for the coagulation/flocculation-pretreateed water source. Breakthrough curves generated from the microcolumn trials revealed DOC removal and consequent DBP reduction to correlate reasonably well with the prevalence pores in the 5–10 nm range. A 3–6 fold increase in capacity was recorded for a 0.005–0.045 cm3/g change in 5–10 nm-sized pore volume density. No corresponding correlation was evident with other media pore size ranges.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Pilot-scale spiral wound membrane assessment for THM precursor rejection from upland waters
    (Taylor and Francis, 2016-03-26) Golea, Dan; Sutherland, S.; Jarvis, Peter; Judd, Simon J.
    The outcomes of a pilot-scale study of the rejection of trihalomethanes (THMs) precursors by commercial ultrafiltration/nanofiltration (UF/NF) spiral-wound membrane elements are presented based on a single surface water source in Scotland. The study revealed the expected trend of increased flux and permeability with increasing pore size for the UF membranes; the NF membranes provided similar fluxes despite the lower nominal pore size. The dissolved organic carbon (DOC) passage decreased with decreasing molecular weight cut-off, with a less than one-third the passage recorded for the NF membranes than for the UF ones. The yield (weight % total THMs per DOC) varied between 2.5% and 8% across all membranes tested, in reasonable agreement with the literature, with the aromatic polyamide membrane providing both the lowest yield and lowest DOC passage. The proportion of the hydrophobic (HPO) fraction removed was found to increase with decreasing membrane selectivity (increasing pore size), and THM generation correlated closely (R2 = 0.98) with the permeate HPO fractional concentration.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback