CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sun, He"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Novel Gumbel-Softmax trick enabled concrete autoencoder with entropy constraints for unsupervised hyperspectral band selection
    (IEEE, 2021-06-04) Sun, He; Ren, Jinchang; Zhao, Huimin; Yuen, Peter W. T.; Tschannerl, Julius
    As an important topic in hyperspectral image (HSI) analysis, band selection has attracted increasing attention in the last two decades for dimensionality reduction in HSI. With the great success of deep learning (DL)-based models recently, a robust unsupervised band selection (UBS) neural network is highly desired, particularly due to the lack of sufficient ground truth information to train the DL networks. Existing DL models for band selection either depend on the class label information or have unstable results via ranking the learned weights. To tackle these challenging issues, in this article, we propose a Gumbel-Softmax (GS) trick enabled concrete autoencoder-based UBS framework (CAE-UBS) for HSI, in which the learning process is featured by the introduced concrete random variables and the reconstruction loss. By searching from the generated potential band selection candidates from the concrete encoder, the optimal band subset can be selected based on an information entropy (IE) criterion. The idea of the CAE-UBS is quite straightforward, which does not rely on any complicated strategies or metrics. The robust performance on four publicly available datasets has validated the superiority of our CAE-UBS framework in the classification of the HSIs.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback