Browsing by Author "Sule, Jibrin"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Application of local mechanical tensioning and laser processing to improve structural integrity of multi-pass welds(Cranfield University, 2015-07) Sule, Jibrin; Ganguly, SupriyoMulti-pass fusion welding by a filler wire (welding electrode) is normally carried out to join thick steel sections used in most engineering applications. Welded joints in an installation, is the area of critical importance, since they are likely to contain a higher density of defects than the parent metal and their physical properties can differ significantly from the parent metal. Fusion arc welding process relies on intense local heating at a joint where a certain amount of the parent metal is melted and fused with additional metal from the filler wire. The intense local heating causes severe transient thermal gradients in the welded component and the resulting uneven cooling that follows produces a variably distributed residual stress field. In multi-pass welds, multiple thermal cycles resulted in a variably distribution of residual stress field across the weld and through the thickness. These complex thermal stresses generated in welds are undesirable but inevitable during fusion welding. Presence of such tensile residual stresses can be detrimental to the service integrity of a welded structure. In addition to a complex distribution of residual stress state, multi-pass welds also forms dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. Dendritic grain structure is weaker and segregation of alloying elements would result in formation of corrosion microcells as well as reduction in overall corrosion prevention due to depletion of alloying elements.Item Open Access Application of local mechanical tensioning and laser processing to refine microstructure and modify residual stress state of a multi-pass 304L austenitic steels welds(Elsevier, 2015-03-03) Sule, Jibrin; Ganguly, Supriyo; Coules, Harry E.; Pirling, ThiloAISI Type 304L austenitic stainless steels are extensively used in industries, and welding is an indispensable tool used for joining these materials. In a multi-pass weld, the development of residual stress to a large extent depends on the response of the weld metal, heat affected zone and parent material to complex thermo-mechanical cycles during welding. Earlier researchers on this area used either mechanical tensioning or heat treatment to modify the residual stress distribution in and around the weld. In this research, microstructural refinement with modification of residual stress state was attempted by using high pressure cold rolling followed by laser processing in 12 mm thick 304L austenitic stainless steels which is a novel technique. The hardening of the weld metal was evaluated after welding, post weld cold rolling, and post weld cold rolling followed by laser processing. The residual stress was determined non-destructively by using neutron diffraction. Residual stress analysis show that post weld cold rolling was effective in modifying the longitudinal residual stress distribution throughout the entire thickness. Post weld cold rolling followed by laser processing performed in this research was to induce recrystallization of the cold rolled grains. However, post weld cold rolling followed by laser processing showed minor grain refinement but was not effective as it reinstated the stress state.Item Open Access Comparative study of evolution of residual stress state by local mechanical tensioning and laser processing of ferritic and austenitic structural steel welds.(Scientific & Academic Publishing Co., 2015-02-21) Sule, Jibrin; Ganguly, Supriyo; Coules, Harry E.; Pirling, T.Complex thermal stresses generated in welded structures are undesirable but inevitable in fusion welding. The presence of residual stresses can be detrimental to the integrity of a welded joint. In this research, redistribution of residual stress magnitude and profile was studied and compared in two multi-pass welded structural alloys (API X100 and 304L stainless steel) after cold rolling and laser processing. The residual stress field was studied by neutron diffraction using the SALSA strain scanner at their reactor neutron source at ILL, Grenoble. In addition to a complex distribution of residual stress state, multi-pass welds also forms dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. Dendritic grain structure is weaker and segregation of alloying elements may result in formation of corrosion microcells as well as reduction in overall corrosion prevention due to depletion of alloying elements in certain areas. The modification of as-welded residual stress state was done by cold rolling which was followed by laser processing to create a recrystallized microstructure to minimise segregation. The main objective of this study is to understand the suitability of this novel manufacturing technique to create a stress free weldment with recrystallised grain structure. Hardness evolution in the welded structures was scanned following welding, post weld cold rolling and cold rolling followed by laser processing. Hardness distribution in both the structural alloys showed a significant evidence of plastic deformation near the cap pass of the weld metal. Residual stress redistribution was observed up to 4 mm from the capping pass for ferritic steel, while in austenitic steel weld, post weld cold rolling was effective in modifying the residual stress redistribution throughout the entire thickness. Laser processing in both cases reinstated the as-welded residual stress distribution and resulted in softening of the strained area.Item Open Access Effect of high-pressure rolling followed by laser processing on mechanical properties, microstructure and residual stress distribution in multi-pass welds of 304L stainless steel(Springer, 2016-01-18) Sule, Jibrin; Ganguly, Supriyo; Suder, Wojciech; Pirling, ThiloMulti-pass fusion welding by a filler material (wire) is normally carried out to join thick steel sections used in most engineering applications. Multiple thermal cycles from a multi-pass weld resulted in a variable distribution of residual stress field across the weld and through the thickness. Presence of tensile residual stresses can be detrimental to the integrity and the service behaviour of the welded joint. In addition to a complex distribution of residual stress state, multi-pass welds also form dendritic grain structure, which are repeatedly heated, resulting in segregation of alloying elements. In this research, microstructural refinement with modification of residual stress state was attempted by applying post-weld cold rolling followed by laser processing and then cold rolling. The residual stress was determined non-destructively by using neutron diffraction. Post-weld cold rolling followed by laser processing was carried out to induce recrystallization of the cold rolled grains. Microstructural characterisation indicates a significant grain refinement near the capping pass. However, post-weld cold rolling followed by laser processing reinstates the lock-in stress. In this study, it was demonstrated that a complete recrystallized microstructure with compressive state of stress can be formed when a further cold rolling is applied on the laser processed, recrystallized microstructure.Item Open Access Stress engineering of multi-pass weld metal to enhance structural integrity(Springer, 2016-05-26) Ganguly, Supriyo; Sule, Jibrin; Yakubu, Mustapha Y.In multi-pass welding, the weld metal and the associated heat-affected zone are subjected to repeated thermal cycling from successive deposition of filler metals. The thermal straining results into multi-mode deformation of the weld metal which causes a variably distributed residual stress field through the thickness and across the weld of a multi-pass weldment. In addition to this, the as-welded fusion zone microstructure shows dendritic formation of grains and segregation of alloying element. This may result in formation of micro-corrosion cells and the problem would aggravate in case of highly alloyed materials. Local mechanical tensioning is an effective way of elimination of the weld tensile residual stress. It has been shown that application of cold rolling is capable not only of removing the residual stress, but depending on its magnitude it may also form beneficial compressive stress state. Multi-pass structural steel welds used as structural alloy in general engineering and structural applications. Such alloys are subjected to severe in-service degradation mechanisms e.g., corrosion and stress corrosion cracking. Welds and the locked-in residual stress in the welded area often initiate the defect which finally results in failure. In the present study, a multi-pass structural steel weld metal was first subjected to post-weld cold rolling which was followed by controlled heating by a fiber laser. Cold straining resulted in redistribution of the internal stress through the thickness and controlled laser processing helps in reforming of the grain structure. However, even with controlled laser, processing the residual stress is reinstated. Therefore, a strategy has been adopted to roll the metal post-laser processing so as to obtain a complete stress-free and recrystallized microstructure.