Browsing by Author "Stocking, Phil"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Continuing airworthiness policy and application to flying crane aircraft(Cranfield University, 2011-01) Gao, Fei; Stocking, PhilThis project is part of a collaborative MSc training programme between the Aviation Industries of China (AVIC) and Cranfield University, aiming at enhancing the competitiveness of AVIC in both international and domestic aviation market through applying continuing airworthiness policies in the whole aircraft development process. The arrangement of the research project is that all students start with a Group Design Project which is based on the Flying Crane Project provided by AVIC. Individual research projects will address some aspects of the Flying Crane Project during the Group Design Project, and then further developed during the period for individual projects. The aim of this research is to apply the airworthiness requirements and the methodology of the Maintenance Steering Group logic (MSG-3) in the Flying Crane Project. This is because that maintenance is one of the key factors of Continuing Airworthiness, and MSG-3 logic is the most accepted and approved method to develop scheduled maintenance for civil aircrafts. The main objectives of this project include: (1) To investigate current Continuing Airworthiness regulations, including European airworthiness requirements (as the main regulation to comply with) and Chinese airworthiness regulations (as an important reference and supplement to the research); (2) To investigate the main analysis methodology of reliability and maintainability, including Damage Tolerance and Failure Mode and Effect Analysis (FMEA); (3) To analyse the data resulted from the Group Design Project using MSG-3 logic to produce a set of Continuing Airworthiness instructions, for the operator and maintenance organisation of the aircraft, from the design organization’s perspective; (4) To develop Continuing Airworthiness instructions for airline operators to compose maintenance programmes for Flying Crane aircrafts, including maintenance tasks and intervals for the selected airframe systems and structural components; and (5) To identify applicable maintenance organisations in China for Flying Crane aircrafts in accordance with both European and Chinese airworthiness requirements. On completion of this research, two aspects of Continuing Airworthiness have been investigated, including maintenance programme and maintenance organization. With MSG-3 logic, the author developed the maintenance plan for three structural components (fuselage skin panel, wing root joint, and fin-fuselage attachment) and one airframe system (fuel system) based on results from the Group Design Project. The author also investigated the Chinese domestic aircraft maintenance companies, and selected suitable maintenance organizations based on technical and economical criteria.Item Open Access A structural design comparison of metallic and composite aircraft pressure retaining doors(Cranfield University, 2012-02) Liu, Hongfen; Stocking, PhilThe pressure retaining door is obviously a sensible part of an aircraft, and the design criteria is much more critical than for the fuselage, so a problem caused by this critical criteria is the heavy weight of the door structure because it should be strong enough to withstand loads and stiff enough to meet the sealing requirements. In spite of the pressure retaining door being so important, it is difficult to find design references. So, in this thesis, the pressure retaining door is investigated first, and then a typical structure of a type A door is selected as the study case using both metallic and composite material, in order to generate a standard method for door structure design, and to identify the key factors which can affect the structure weight. The study indicates that the structure weight of a type A door can be kept in a range for different combinations of beams and stringers, and the composite door structure can be 20% lighter than the metallic door while the stiffness of the two doors remains similar. It is found that the skin contributes much more weight to the door structure than other components and the skin thickness is affected by the short edge of the skin panel divided by beams and stringers. The results also found that it is much more serious when the end stop fails than when the middle stops fail. Therefore, it appears that the composite door is a good material as an alternative to aluminium. Also the method of door structure design is reasonable for the composite door, although it would be better to consider the stiffness of beams while in the theory design period. Besides IRP, the Group Design Project (GDP) is another important part of the MSc study; it lasts nearly half a year and we complete the Fly-wing concept design. The main contribution of the author to the GDP is the arrangement of doors, and also includes the family issues, cabin layout arrangement and a 3D model construct, which can be seen in APPENDIX B. According to the GDP work, I will have broadened my professional knowledge and will have an overall view of aircraft design.