Browsing by Author "Soori, U."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Enhanced target detection in CCTV network system using colour constancy(2016-06-02) Soori, U.; Yuen, P.The focus of this research is to study how targets can be more faithfully detected in a multi-camera CCTV network system using spectral feature for the detection. The objective of the work is to develop colour constancy (CC) methodology to help maintain the spectral feature of the scene into a constant stable state irrespective of variable illuminations and camera calibration issues. Unlike previous work in the field of target detection, two versions of CC algorithms have been developed during the course of this work which are capable to maintain colour constancy for every image pixel in the scene: 1) a method termed as Enhanced Luminance Reflectance CC (ELRCC) which consists of a pixel-wise sigmoid function for an adaptive dynamic range compression, 2) Enhanced Target Detection and Recognition Colour Constancy (ETDCC) algorithm which employs a bidirectional pixel-wise non-linear transfer PWNLTF function, a centre-surround luminance enhancement and a Grey Edge white balancing routine. The effectiveness of target detections for all developed CC algorithms have been validated using multi-camera ‘Imagery Library for Intelligent Detection Systems’ (iLIDS), ‘Performance Evaluation of Tracking and Surveillance’ (PETS) and ‘Ground Truth Colour Chart’ (GTCC) datasets. It is shown that the developed CC algorithms have enhanced target detection efficiency by over 175% compared with that without CC enhancement. The contribution of this research has been one journal paper published in the Optical Engineering together with 3 conference papers in the subject of research.Item Open Access Illumination invariance and shadow compensation via spectro-polarimetry technique(Maney Publishing, 2013-06-28T00:00:00Z) Ibrahim, I.; Yuen, Peter W. T.; Hong, K.; Chen, T.; Soori, U.; Jackman, J.; Richardson, Mark A.A major problem for obtaining target reflectance via hyperspectral imaging systems is the presence of illumination and shadow effects. These factors are common artefacts, especially when dealing with a hyperspectral imaging system that has sensors in the visible to near infrared region. This region is known to have highly scattered and diffuse radiance which can modify the energy recorded by the imaging system. Shadow effect will lower the target reflectance values due to the small radiant energy impinging on the target surface. Combined with illumination artefacts, such as diffuse scattering from the surrounding targets, background or environment, the shape of the shadowed target reflectance will be altered. In this study we propose a new method to compensate for illumination and shadow effects on hyperspectral imageries by using a polarization technique. This technique, called spectro-polarimetry, estimates the direct and diffuse irradiance based on two images, taken with and without a polarizer. The method is evaluated using a spectral similarity measure, angle and distance metric. The results of indoor and outdoor tests have shown that using the spectro-polarimetry technique can improve the spectral constancy between shadow and full illumination spectra.