CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Soltani, Elinaz"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNNEC methods
    (Elsevier, 2019-06-21) Rahmati, Omid; Choubin, Bahram; Fathabadi, Abolhasan; Coulon, Frederic; Soltani, Elinaz; Shahabi, Himan; Mollaefar, Eisa; Tiefenbacher, John; Cipullo, Sabrina; Bin Ahmad, Baharin; Tien Bui, Dieu
    Although estimating the uncertainty of models used for modelling nitrate contamination of groundwater is essential in groundwater management, it has been generally ignored. This issue motivates this research to explore the predictive uncertainty of machine-learning (ML) models in this field of study using two different residuals uncertainty methods: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Prediction-interval coverage probability (PICP), the most important of the statistical measures of uncertainty, was used to evaluate uncertainty. Additionally, three state-of-the-art ML models including support vector machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially model groundwater nitrate concentrations. The models were calibrated with nitrate concentrations from 80 wells (70% of the data) and then validated with nitrate concentrations from 34 wells (30% of the data). Both uncertainty and predictive performance criteria should be considered when comparing and selecting the best model. Results highlight that the kNN model is the best model because not only did it have the lowest uncertainty based on the PICP statistic in both the QR (0.94) and the UNEEC (in all clusters, 0.85–0.91) methods, but it also had predictive performance statistics (RMSE = 10.63, R2 = 0.71) that were relatively similar to RF (RMSE = 10.41, R2 = 0.72) and higher than SVM (RMSE = 13.28, R2 = 0.58). Determining the uncertainty of ML models used for spatially modelling groundwater-nitrate pollution enables managers to achieve better risk-based decision making and consequently increases the reliability and credibility of groundwater-nitrate predictions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback