CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Simota, C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    What can scenario modelling tell us about future European scale agricultural land use, and what not?
    (Elsevier Science B.V., Amsterdam., 2006-04-01T00:00:00Z) Audsley, Eric; Pearn, Kerry R.; Simota, C.; Cojocaru, G.; Koutsidou, E.; Rounsevell, M. D. A.; Trnka, M.; Alexandrov, V.
    Given scenarios describing future climates and socio-techno-economics, this study estimates the consequences for agricultural land use, combining models of crop growth and farm decision making to predict profitability over the whole of Europe, driven solely by soil and climate at each location. Each location is then classified by its profitability as intensive or extensive agriculture or not suitable for agriculture. The main effects of both climate and socio- economics were in the agriculturally marginal areas of Europe. The results showed the effect of different climates is relatively small, whereas there are large variations when economic scenarios are included. Only Finland's agricultural area significantly responds to climate by increasing at the expense of forests in several scenarios. Several locations show more difference due to climate model (PCM versus HadCM3) than emission scenario, because of large differences in predicted precipitation, notably the Ardennes switching to arable in HadCM3. Scenario modelling has identified several such regions where there is a need to be watchful, but few where all of the scenario results agree, suggesting great uncertainty in future projections. Thus, it has not been possible to predict any futures, though all results agree that in Central Europe, changes are likely to be relatively small.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content?
    (Blackwell Publishing Ltd, 2008-10-31T00:00:00Z) Saby, N. P. A.; Bellamy, Patricia H.; Morvan, X.; Arrouays, D.; Jones, Robert J. A.; Verheijen, Frank G. A.; Kibblewhite, Mark G.; Verdoodt, A.; Üveges, J.; Freudenschuß, A.; Simota, C.
    Within the United Nations Framework Convention on Climate Change, articles 3.3 and 3.4 stipulate that some voluntary activities leading to an additional carbon (C) sequestration in soils could be accounted as C sinks in national greenhouse gas inventories. These additional C stocks should be verifiable. In this work, we assess the feasibility of verifying the effects of changes in land use or management practice on soil organic carbon (SOC), by comparing minimum detectable changes in SOC concentration for existing European networks suitable for soil monitoring. Among the tested scenarios, the minimum detectable changes differed considerably among the soil-monitoring networks (SMNs). Considerable effort would be necessary for some member states to reach acceptable levels of minimum detectable change for C sequestration accounting. For SOC, a time interval of about 10 years would enable the detection of some simulated large changes in most European countries. In almost all cases, the minimum detectable change in SOC stocks remains greater than annual greenhouse gases emissions. Therefore, it is unlikely that SMNs could be used for annual national C accounting. However, the importance of organic C in soil functions, and as an indicator of soil condition and trends, underlines the importance of establishing effective national SMNs.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback