Browsing by Author "Simoes, Francisco"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals(Elsevier, 2020-06-27) Simoes, Francisco; Colston, Robert; Rosa-Fernandes, Catarina; Vale, Peter; Stephenson, Tom; Soares, AnaPhosphorus and nutrient recovery from wastewater as mineral salts can support local replenishment of fertilisers and reduce mining, contributing to the circular economy. Wastewater and related streams are rich in nutrients, however; there is need to develop bio-based processes to recover them. This study investigates the fractions of phosphorus (P) used by Brevibacterium antiquum to form struvite biominerals (bio-struvite) in wastewater sludge dewatering liquors. After 72h of incubation, 25.6 mg P/L were recovered as bio-struvite from 12.4 mg P/L organic plus condensed P and 13.2 mg P/L of ortho-phosphate. The potential of sludge dewatering liquors to recover nutrients as struvite was investigated by characterising ten types of sludge liquors (originating from primary, secondary sludge, feed to anaerobic digester and digestate, from 3 types of wastewater treatment plants) for their P fractions together with other parameters relevant for B. antiquum growth. Results indicated that liquors obtained from primary sludge, feed to anaerobic digesters and digestate were the most suitable to produce bio-struvite, as these were found to frequently have a high content of organic and condensed P, between to 276–732 mg P/L. Liquors, from all the investigated sites, presented a higher potential for bio-struvite production than with conventional struvite precipitation. This study demonstrated that B. antiquum could convert organic and condensed P into bio-struvite, and this opens up a completely new way to recover forms of phosphorus that are not typically available for nutrient recovery in a single processItem Open Access The role of pH on the biological struvite production in digested sludge dewatering liquors(Nature Publishing Group, 2018-05-08) Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, AnaStruvite production mediated by bacteria has opened up a new route for phosphorus recovery from wastewater streams but its application to digested sludge dewatering liquors is not yet well understood. This study investigates the growth and biological struvite production of selected bacteria in wastewater liquors with pHs between 5.7 to 9.1. The bacterial growth was assessed through flow cytometry. Bacillus pumilus, Halobacterium salinarum and Brevibacterium antiquum remained viable at pHs between 5.7 to 9.1 but B. antiquum was able to grow at pHs between 7.3 to 7.8. Further analysis allowed the identification of crystals as struvite in tests between pH 7.3 to 8.3. All strains were capable of producing struvite at a range of pHs, but the highest production of 135–198 mg/L was observed for pHs between 7.3 to 8.3. At pHs > 8.3, precipitation of struvite and calcium compounds was observed in inoculated and non-inoculated tests. This study demonstrates that biological struvite production can occur at a wide range of pHs, hence significantly different from chemical struvite precipitation that occurs at pH > 8.3, making it a potentially viable process for phosphorus recovery as struvite from wastewater streams and sludge liquors without strict pH control.Item Open Access Understanding the growth of the bio-struvite production Brevibacterium antiquum in sludge liquors(Taylor & Francis, 2017-12-21) Simoes, Francisco; Vale, Peter; Stephenson, Tom; Soares, AnaBiological struvite (bio-struvite) production through biomineralization has been suggested as an alternative to chemically derived struvite production to recover phosphorus from wastewater streams. In this study, statistical experimental design techniques were used to find the optimal growth rate (μ) of Brevibacterium antiquum in sludge liquors. Acetate, oleic acid, NaCl, NH4-N, and Ca2+ were shown to affect the growth rate of B. antiquum. The growth rate reached 3.44 1/d when the bacteria were supplemented with 3.0% w/v NaCl and 1124 mg chemical oxygen demand/L as acetate. However, NaCl was found to hinder the biomineralization of bio-struvite. A two-stage experiment demonstrated that bio-struvite was produced in the presence of acetate. Bio-struvite production was confirmed with X-ray spectroscopy and crystal morphology (prismatic, tabular, and twinned crystal habit) through electron microscope analysis. The bio-struvite production was estimated by measuring phosphate content of the recovered precipitates, reaching 9.6 mg P/L as bio-struvite. Overall, these results demonstrated the optimal conditions required to achieve high growth rates as well as bio-struvite production with B. antiquum. The results obtained in this study could be used to develop a process to grow B. antiquum in wastewater streams in mixed cultures and recover phosphorus-rich products such as struvite.