CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Simms, Nigel John"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Numerical study on the combustion and emissions characteristics of liquid ammonia spray ignited by dimethyl ether spray
    (MDPI, 2024-12-31) Leng, Yupeng; Dai, Liming; Wang, Qian; Lu, Jiayu; Yu, Ouqing; Simms, Nigel John
    Ammonia has attracted considerable attention as a zero-carbon fuel for decarbonizing energy-intensive industries. However, its low reactivity and narrow flammability limit efficient ignition and efficient combustion. By using CONVERGR software, this study numerically investigates the ignition and combustion characteristics of liquid ammonia spray ignited by dimethyl ether spray in a constant-volume chamber at an ambient temperature of 900 K. Critical parameters, including injection angles (90°–150°), liquid ammonia injection pressures (60–90 MPa), and ambient pressures (2.8–5.8 MPa), were systematically analyzed to evaluate their effects on ignition conditions and emissions. Results indicate that increasing the injection angle improves mixing between liquid ammonia and dimethyl ether sprays, enhancing combustion efficiency and achieving a maximum efficiency of 92.47% at 120°. Excessively large angles cause incomplete combustion or misfire. Higher liquid ammonia injection pressures improve atomization and promote earlier interactions between the sprays but reduce combustion efficiency, decreasing by approximately 2% as injection pressure increases from 60 MPa to 90 MPa. Higher ambient pressures improve combustion stability but decrease ammonia combustion efficiency. Post-combustion NO emissions at 5.8 MPa are reduced by 60.48% compared to 3.8 MPa. The formation of NO is strongly correlated with the combustion efficiency of liquid ammonia. A higher combustion rate of liquid ammonia tends to result in elevated NO. Based on these findings, an injection angle of 120°, an NH3 injection pressure of 75 MPa, and an ambient pressure of 3.8 MPa are recommended to optimize combustion efficiency.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback