CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Shen, Yuan"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bioaccumulation of Hg in rice leaf facilitates selenium bioaccumulation in rice (Oryza sativa L.) leaf in the Wanshan mercury mine
    (American Chemical Society , 2020-02-26) Chang, Chuanyu; Chen, Chongying; Yin, Runsheng; Shen, Yuan; Mao, Kang; Yang, Zhugen; Feng, Xinbin; Zhang, Hua
    Mercury (Hg) bioaccumulation in rice poses a health issue for rice consumers. In rice paddies, selenium (Se) can decrease the bioavailability of Hg through forming the less bioavailable Hg selenides (HgSe) in soil. Rice leaves can directly uptake a substantial amount of elemental Hg from the atmosphere, however, whether the bioaccumulation of Hg in rice leaves can affect the bioaccumulation of Se in rice plants is not known. Here, we conducted field and controlled studies to investigate the bioaccumulation of Hg and Se in the rice-soil system. In the field study, we observed a significantly positive correlation between Hg concentrations and BAFs of Se in rice leaves (r2 = 0.60, p < 0.01) collected from the Wanshan Mercury Mine, SW China, suggesting that the bioaccumulation of atmospheric Hg in rice leaves can facilitate the uptake of soil Se, perhaps through the formation of Hg-Se complex in rice leaves. This conclusion was supported by the controlled study, which observed significantly higher concentrations and BAFs of Se in rice leaf at a high atmospheric Hg site at WMM, compared to a low atmospheric Hg site in Guiyang, SW China.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback