Browsing by Author "Sheikh Al Shabab, Ahmed"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Data for paper "A Modular Multifidelity Approach for Multiphysics Oleo-Pneumatic Shock Absorber Simulations"(Cranfield University, 2024-02-21 18:42) Sheikh Al Shabab, Ahmed; Silva, Paulo; Grenko, Bojan; Tsoutsanis, Panagiotis; Skote, MartinDataset for the underlying data discussed in the paper titled "A Modular Multifidelity Approach for Multiphysics Oleo-Pneumatic Shock Absorber Simulations"Item Open Access Data for Paper "Numerical Investigation of Oleo-Pneumatic Shock Absorber: A Multi-Fidelity Approach"(Cranfield University, 2023-08-25 14:35) Sheikh Al Shabab, Ahmed; Grenko, Bojan; Vitlaris, Dimitrios; Tsoutsanis, Panagiotis; Antoniadis, Antonios; Skote, MartinRaw data of simulations used in the ECCOMAS 2022 paper titled: Numerical Investigation of Oleo-Pneumatic Shock Absorber: A Multi-Fidelity ApproachItem Open Access Data for Paper "Numerical Investigation of Orifice Nearfield Flow Development in Oleo-Pneumatic Shock Absorbers"(Cranfield University, 2022-02-18 09:57) Sheikh Al Shabab, Ahmed; Skote, Martin; Tsoutsanis, Panagiotis; Antoniadis, Antonios; Vitlaris, Dimitrios; Grenko, BojanData for the journal paper titled: Numerical Investigation of Orifice Nearfield Flow Development in Oleo-Pneumatic Shock AbsorbersItem Open Access Data for Paper "Unsteady Multiphase Simulation of Oleo-Pneumatic Shock Absorber Flow"(Cranfield University, 2024-02-21 18:05) Sheikh Al Shabab, Ahmed; Grenko, Bojan; Silva, Paulo; Antoniadis, Antonios; Tsoutsanis, Panagiotis; Skote, MartinDataset for the paper "Unsteady Multiphase Simulation of Oleo-Pneumatic Shock Absorber Flow"Item Open Access Data Supporting "Study of Orifice Design on Oleo-Pneumatic Shock Absorber"(Cranfield University, 2024-05-02 11:15) Silva, Paulo; Tsoutsanis, Panagiotis; Skote, Martin; Sheikh Al Shabab, AhmedThis data contain the results of the paper.Item Open Access Numerical investigation of oleo-pneumatic shock absorber: a multi-fidelity approach(ECCOMAS, 2022-11-24) Sheikh Al Shabab, Ahmed; Grenko, Bojan; Vitlaris, Dimitrios; Tsoutsanis, Panagiotis; Antoniadis, Antonis; Skote, MartinA representative shock absorber geometry is developed based on the general guidelines available in the literature, and it is validated against experimental measurements from a drop test. Simulations are conducted using a multi-fidelity approach ranging from unsteady scale resolving three-dimensional simulations to dynamic system models. High fidelity simulations provide a detailed insight into the flow physics inside the shock absorber, as well as help calibrate and validate lower fidelity methods, under conditions for which no experimental measurements are available to achieve that purpose. On the other hand, lower fidelity methods are used to efficiently scan the design space and test the dependency of the shock absorber performance on the various design parameters, in addition to identifying parameter combinations that would be of interest to investigate using a high-fidelity approach.