Browsing by Author "Sang, Yuan Jun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Adaptive sliding-mode-backstepping trajectory tracking control of underactuated airships(Elsevier, 2019-12-12) Liu, Shi Qian; Sang, Yuan Jun; Whidborne, James F.The problem of trajectory tracking control for an underactuated stratospheric airship with model parameter uncertainties and wind disturbances is addressed in the paper. An adaptive backstepping sliding-mode controller is designed from the airship nonlinear dynamics model. The proposed controller has a two-level structure for trajectory guidance, tracking and stability, and the developed controller, based on nonlinear adaptive sliding-mode backstepping method, provides airship attitude and velocity control for the entire flight process. Furthermore, an active set based weighted least square algorithm is applied to find the optimal control surface inputs and the thruster commands under constraints of actuator saturation. The closed-loop system of trajectory tracking control plant is proved to be globally asymptotically stable by using Lyapunov theory. By comparing with traditional backstepping control and PID design, the results obtained demonstrate the capacity of the airship to execute a realistic trajectory tracking mission under two cases of lateral- and roll- underactuations, even in the presence of aerodynamic coefficient uncertainties, and wind disturbances.Item Open Access LPV robust servo control of aircraft active side-sticks(Emerald, 2020-03-31) Zhou, Guang Rui; Liu, Shi Qian; Sang, Yuan Jun; Wang, Xu Dong; Jia, Xiao Peng; Niu, Er ZhuoPurpose This paper aims to focus on the variable stick force-displacement (SFD) gradience in the active side stick (ASS) servo system for the civil aircraft. Design/methodology/approach The problem of variable SFD gradience was introduced first, followed by the analysis of its impact on the ASS servo system. To solve this problem, a linear-parameter-varying (LPV) control approach was suggested to process the variable gradience of the SFD. A H∞ robust control method was proposed to deal with the external disturbance. Findings To validate the algorithm performance, a linear time-variant system was calculated to be used to worst cases and the SFD gradience was set to linear and non-linear variation to test the algorithm, and some typical examples of pitch angle and side-slip angle tracking control for a large civil aircraft were also used to verify the algorithm. The results showed that the LPV control method had less settling time and less steady tracking errors than H∞ control, even in the variable SFD case. Practical implications This paper presented an ASS servo system using the LPV control method to solve the problem caused by the variable SFD gradience. The motor torque command was calculated by pressure and position feedback without additional hardware support. It was more useful for the electronic hydraulic servo actuator. Originality/value This was the research paper that analyzed the impact of the variable SFD gradience in the ASS servo system and presented an LPV control method to solve it. It was applicable for the SFD gradience changing in the linear and non-linear cases.