Browsing by Author "Ritchie, Hannah"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Sand dam contributions to year-round water security monitored through telemetered handpump data(Springer, 2023-10-17) Ritchie, Hannah; Holman, Ian P.; Parker, Alison; Chan, JoannaSand dams are a form of rainwater harvesting, prolific in arid and semi-arid lands. Water is provided partly via handpumps, which, as the only improved method of abstraction from sand dams, are important for drinking water security. Accelerometers and cellular transmitters were fitted to 30 handpumps by the Africa Sand Dam Foundation (ASDF) in 2019 to monitor the use and reliability of the handpumps by recording hourly water volume abstracted. Data from April 2019 to October 2021 for 26 of these sites, alongside qualitative data, were analysed and each handpump’s contribution to year-round water security was explored, focusing on the long dry season when water supply from other sources is compromised. Abstraction was over 20 times higher in the long dry season than in any other season, and at sites with higher salinity, higher livestock use, and larger dam wall area. At 21 wells, abstraction was still being recorded at the end of at least one long dry season; however, high spatial and temporal heterogeneity between pumps and seasons means that not all sand dams deliver reliable water supply year-round. Quantifying the contribution that sand dams make to water security is crucial for understanding their resilience against a changing climate and can aid decision makers when choosing the most appropriate water management technique. Knowledge of temporal and site heterogeneity in abstraction can inform when other water sources need increasing and can help with sand dam design optimisation. Overall, our results indicate the positive contribution that sand dams make to year-round water security through the water that is abstracted through handpumps.Item Open Access Sand dams as a potential solution to rural water security in drylands: Existing research and future opportunities(Frontiers, 2021-04-14) Ritchie, Hannah; Eisma, Jessica A.; Parker, AlisonSand dams, a rainwater harvesting technique, are small dams constructed across ephemeral streams. During the rainy season, water is stored in the sand that accumulates behind the dam. Sand dams provide communities in drylands with water during the dry season via scoop holes, pools, and shallow wells. Whilst many studies portray sand dams as a positive solution to the growing threat of dryland water insecurity, others highlight their challenges, including poor water quality, evaporation and leakage from some dams, and the contested failure rate and ability of dams to provide water year-round. This article reviews the peer-reviewed and gray literature on sand dams discovered through Scopus and Google Scholar searches, reference lists, and personal contacts. Findings from the collected literature were reviewed and categorized into sand dam hydrology, health and well-being impacts, economic cost and benefits, and water quality topics. In most numerical simulations, sand dams supply water to the local community throughout much of the dry season and exhibit a long-term positive impact on groundwater. Accounts of water storage and loss based on field measurements, conversely, often show that most water is lost due to evapotranspiration and seepage from the sand reservoir rather than community use. Furthermore, the positive impact on local groundwater storage, while variable, is likely seasonal. Sand dams are relatively affordable to build; construction estimates range from 6,000 to 8,500 EUR. However, existing literature suggests that sand dams are likely not a cost-efficient means of supplying water. Nevertheless, successful sand dams can significantly increase water availability and use, whilst reducing traveling time for water collection, subsequently providing a host of secondary benefits from improved hygiene, economic opportunity, and education. Positive impacts, however, are not equally shared and depend on variables, such as abstraction method, catchment, and household location. Furthermore, their water quality is variable, with high microbiological levels detected especially in scoop holes. Whilst sand dams can increase water security and resilience, they may not be an inclusive solution for all. More research is needed to assess the long-term sustainability of sand dams while accounting for the uncertainty of a changing climate.