CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ricamora, M"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Investigation into the environmental fate of the combined Insensitive High Explosive constituents 2, 4-dinitroanisole (DNAN), 1-nitroguanidine (NQ) and nitrotriazolone (NTO) in soil
    (Elsevier, 2018-01-12) Temple, Tracey J.; Ladyman, Melissa K.; Mai, Nathalie; Galante, Erick; Ricamora, M; Shirazi, R; Coulon, Frederic
    Contamination of military ranges by the use of explosives can lead to irreversible environmental damage, specifically to soil and groundwater. The fate and effects of traditional explosive residues are well understood, while less is known about the impact of Insensitive High Explosives (IHEs) that are currently being brought into military service. Current research has focussed on the investigation of individual constituents of IHE formulations, which may not be representative of real-world scenarios when explosive residues will be deposited together. Therefore, this study investigated the fate and transport of the combined IHE constituents 2,4-dinitroanisole (DNAN), 1-nitroguanidine (NQ) and 3-nitro-1,2,4-triazol-5-one (NTO) in two UK soil types. Static experiments ran for 9 weeks to determine the fate of the combined explosive constituents in soil by monitoring the rate of degradation. Transport was examined by running soil column experiments for 5 weeks, with a watering regime equivalent to the average yearly UK rainfall. Both static and soil column experiments confirmed that DNAN and NTO started to degrade within twenty-four hours in soil with high organic content, and were both completely degraded within sixty days. NQ was more stable, with 80% of the original material recovered after sixty days. The major degradation product of DNAN in the test soils was 2-amino-4-nitroanisole (2-ANAN), with trace amounts of 4-amino-2-nitroanisole. NTO was rapidly degraded in soil with high organic content, although no degradation products were identified. Results supported work from literature on the individual constituents DNAN, NQ and NTO suggesting that the three explosives in combination did not interact with each other when in soil. This study should provide a useful insight into the behaviour of three combined Insensitive High Explosive constituents for the predication of soil and water contamination during military training.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback