Browsing by Author "Reid, Brian J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Field verification of low-level biochar applications as effective ameliorants to mitigate cadmium accumulation into Brassica campestris L from polluted soils(Frontiers, 2023-01-16) Zhang, Youchi; Liu, Shuang; Lin, Shanna; Reid, Brian J.; Coulon, Frederic; Cai, ChaoIntroduction: Cadmium (Cd) has been recognized as a significant contributor to the pollution of farmland soils in China, and biochars have been reported to be effective in mitigating soil Cd pollution. However, most studies have been conducted in laboratory or greenhouse settings, not at a field scale, and the biochars used have been applied at unrealistically high amounts (>10 t/ha). Methods: In this research, three biochars: rice straw biochar (RSB), pig manure biochar (PMB) and rice husk biochar (RHB) were produced from readily available farm residues. Then the effects at low-level application (1.8 and 3.6 t/ha) on Cd were investigated in a field experiment cropped with rape (Brassica campestris L.). Results: Batch adsorption experiments indicated Cd adsorption capacity of three biochars followed the order of RSB (43.5 mg/g) > PMB (33.3 mg/g) > RHB (24.4 mg/g). Field experiment indicated biochar amendments could slightly change soil pH and cation exchange capacity (CEC); yet led to considerable and significant decreases in extractable Cd concentrations [reductions of: 43%–51% (PMB), 29%– 35% (RSB) and 17%–19% (RHB)]. Reduced extractable Cd correlated with lower Cd concentrations in rape plants. PMB and RSB were more effective in decreasing Cd phytoaccumulation into edible parts of rape (>68% reduction) than RHB. Discussion: Low-level application of PMB or RSB could efficiently decrease the phytoaccumulation of Cd from soils into crops. These results demonstrate the reality of biochar-based remediation solutions to contribute to the mitigation of diffuse Cd contamination in farmland. The results also highlight the need to trail biochars in the presence of the soil to be targeted for remediation.Item Open Access Remediation of cadmium and lead polluted soil using thiol-modified biochar(Elsevier, 2020-01-07) Fan, Jiajun; Cai, Chao; Chi, Haifeng; Reid, Brian J.; Coulon, Frederic; Zhang, Youchi; Hou, YanweiThiol-modified rice straw biochar (RS) was prepared by an esterification reaction with β-mercaptoethanol and used for the remediation of Cd and Pb polluted soils. Modified biochar was characterized through elemental analysis, BET analysis, FE-SEM, FT-IR and XPS. These analytical results revealed that thiol groups were successfully grafted onto the surface of the biochar and were involved in metal ion complexation. Batch sorption experiments indicated that Cd2+ and Pb2+ sorption onto RS described well by a pseudo second order kinetic model and a Langmuir isotherm. The maximum adsorption capacities for Cd2+ and Pb2+, in the single-metal systems, were 45.1 and 61.4 mg g−1, respectively. In the binary-metal systems, RS selectively adsorbed Cd2+ over Pb2+. Cd2+ and Pb2+ were removed mainly through surface complexation. In the soil incubation experiments (28 days), RS reduced the available Cd by 34.8–39.2 %; while, RS reduced the available Pb by 8.6 %–11.1 %. This research demonstrates RS as a potentially effective amendment for the remediation of heavy metal polluted soils.