CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Reeves, Richard John"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Demodulation and de-multiplexing of a fibre Bragg grating sensor array using volume holograms
    (Cranfield University, 2009) Reeves, Richard John; James, Stephen W.; Tatam, Ralph P.
    The demodulation of a Wavelength Division Multiplexed FBG sensor array by a matching array of holograms hosted within a Volume Holographic (VH) material is considered within this thesis. The FBG sensor elements possess separate quiescent wavelengths and operate within different wavelength ranges. The edge of the transfer function of the demodulating holographic element is aligned with the operating range of the matching sensor element. The holographic element then diffracts a fraction of the sensor signal depending on its instantaneous wavelength. The signals from each of the sensor elements are also diffracted through separate angles to matching detectors so de-multiplexing the sensor array. A scheme using narrow bandwidth holographic transfer functions to demodulate a two element strain sensor array fabricated 4nm apart is reported. The transfer functions and the hysteresis within the PZT actuator, applying the strain, are represented mathematically and used to process results. These are compared with a normalised saw-tooth voltage waveform applied to the PZT to achieve a high Pearson correlation factor of 0.9992. The holograms however possessed poor diffraction efficiency <1% so severely degrading strain resolution. The crosstalk between the sensors’ channels is measured as -8.3dB. The demodulation scheme is intensity based so is susceptible to fluctuations in source intensity and fibre bend losses. An intensity reference scheme is therefore demonstrated using two holograms to demodulate a single FBG strain sensor. The sensor’s signal is divided by the two holograms and the intensity of the respective parts recorded on matched photo-detectors. Ratiometric detection is then used to identify changes in applied strain while disregarding fluctuations in source intensity and fibre bend losses. The standard difference over sum equation for ratiometric detection however is modified to take account of the respective holographic transfer functions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback