Browsing by Author "Rawesat, Abdulwahab"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A preliminary economic analysis of the process of decarbonising an oil-exporting country: the case of Libya(MDPI, 2024-12-06) Rawesat, Abdulwahab; Pilidis, PericlesThis paper offers a basic analysis for strategic decision-makers of the process when an economy shifts from oil to non-carbon energy exports and zero carbon emissions. The fundamental concept is how to offer environmental performance without causing an economic contraction. The costs and feasibility of solar, wind, and helium closed-cycle technologies are thoroughly and independently compared. Solar panels make up 0.67% of the USD 1.14 trillion total cost of solar energy, which is the capital investment, with panels accounting for 0.51%. Future technical developments are expected to bring down the cost of such solar farms to USD 0.74 trillion. Turbines comprise 66% of the estimated USD 0.67 trillion wind energy costs. At USD 0.36 trillion, helium closed-cycle gas turbines—which account for 0.78% of the overall cost—are essential for stabilising energy output. With a focus on cost viability, this analysis offers direction for Libya’s transition to energy self-sufficiency and export, in support of global carbon reduction targets. It also offers unique insights into areas not previously covered by other studies. This paper’s unique contribution is its economic analysis of the decarbonisation of an entire oil-exporting nation.Item Open Access ‘Greening’ an oil exporting country: a hydrogen and helium closed-cycle gas turbines case study(SCIE Publish, 2024-02-26) Rawesat, Abdulwahab; Pilidis, PericlesHolistic decarbonisation requires collaborative efforts and substantial investments across diverse economic sectors. This study introduces an innovative national approach, blending technological insights and philosophical considerations to shape decarbonization policies and practices. Libya is the case study. The proposed framework involves submersible power stations with continuous-duty helium closed-cycle gas turbines to supply electricity demand and hydrogen. Extensive national data is analysed, incorporating factors such as sectoral consumption, sea temperature, and port locations. An analytical model is developed, providing a valuable foundation for realistic decarbonization scenarios. The model aims to maintain the benefits of current energy consumption, assuming a 2% growth rate, while assessing changes in a fully green economy. The results offer qualitative and quantitative insights on hydrogen use and an expected rise in electricity demand. Two scenarios are examined: self-sufficiency and replacing oil exports with hydrogen exports. This study provides a quantitative perspective on decarbonization, focusing on a submersible helium closed cycle gas turbine concept resistant to natural disasters and proliferation. Findings underscore the substantial changes and investments needed for this transition, identifying primary needs of 27 GW or 129 GW for self-sufficiency and exports, respectively. This foundational analysis marks the start of research, investment, and political agendas toward decarbonization.Item Open Access ‘Greening’ an oil exporting country: a hydrogen, wind and gas turbine case study(MDPI, 2024-02-22) Rawesat, Abdulwahab; Pilidis, PericlesIn the quest for achieving decarbonisation, it is essential for different sectors of the economy to collaborate and invest significantly. This study presents an innovative approach that merges technological insights with philosophical considerations at a national scale, with the intention of shaping the national policy and practice. The aim of this research is to assist in formulating decarbonisation strategies for intricate economies. Libya, a major oil exporter that can diversify its energy revenue sources, is used as the case study. However, the principles can be applied to develop decarbonisation strategies across the globe. The decarbonisation framework evaluated in this study encompasses wind-based renewable electricity, hydrogen, and gas turbine combined cycles. A comprehensive set of both official and unofficial national data was assembled, integrated, and analysed to conduct this study. The developed analytical model considers a variety of factors, including consumption in different sectors, geographical data, weather patterns, wind potential, and consumption trends, amongst others. When gaps and inconsistencies were encountered, reasonable assumptions and projections were used to bridge them. This model is seen as a valuable foundation for developing replacement scenarios that can realistically guide production and user engagement towards decarbonisation. The aim of this model is to maintain the advantages of the current energy consumption level, assuming a 2% growth rate, and to assess changes in energy consumption in a fully green economy. While some level of speculation is present in the results, important qualitative and quantitative insights emerge, with the key takeaway being the use of hydrogen and the anticipated considerable increase in electricity demand. Two scenarios were evaluated: achieving energy self-sufficiency and replacing current oil exports with hydrogen exports on an energy content basis. This study offers, for the first time, a quantitative perspective on the wind-based infrastructure needs resulting from the evaluation of the two scenarios. In the first scenario, energy requirements were based on replacing fossil fuels with renewable sources. In contrast, the second scenario included maintaining energy exports at levels like the past, substituting oil with hydrogen. The findings clearly demonstrate that this transition will demand great changes and substantial investments. The primary requirements identified are 20,529 or 34,199 km2 of land for wind turbine installations (for self-sufficiency and exports), and 44 single-shaft 600 MW combined-cycle hydrogen-fired gas turbines. This foundational analysis represents the commencement of the research, investment, and political agenda regarding the journey to achieving decarbonisation for a country.