Browsing by Author "Randa, Maulana"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Delay-based true random number generator in sub-nanomillimeter IoT devices(MDPI, 2020-05-15) Randa, Maulana; Samie, Mohammad; Jennions, Ian K.True Random Number Generators (TRNGs) use physical phenomenon as their source of randomness. In electronics, one of the most popular structures to build a TRNG is constructed based on the circuits that form propagation delays, such as a ring oscillator, shift register, and routing paths. This type of TRNG has been well-researched within the current technology of electronics. However, in the future, where electronics will use sub-nano millimeter (nm) technology, the components become smaller and work on near-threshold voltage (NTV). This condition has an effect on the timing-critical circuit, as the distribution of the process variation becomes non-gaussian. Therefore, there is an urge to assess the behavior of the current delay-based TRNG system in sub-nm technology. In this paper, a model of TRNG implementation in sub-nm technology was created through the use of a specific Look-Up Table (LUT) in the Field-Programmable Gate Array (FPGA), known as SRL16E. The characterization of the TRNG was presented and it shows a promising result, in that the delay-based TRNG will work properly, with some constraints in sub-nm technologyItem Open Access Design of hardware-orientated security towards trusted electronics.(Cranfield University, 2020-07) Randa, Maulana; Jennions, Ian K.; Samie, MohammadWhile the Internet of Things (IoT) becomes one of the critical components in the cyber-physical system of industry 4.0, its root of trust still lacks consideration. The purpose of this thesis was to increase the root of trust in electronic devices by enhance the reliability, testability, and security of the bottom layer of the IoT system, which is the Very Large-Scale Integration (VLSI) device. This was achieved by implement a new class of security primitive to secure the IJTAG network as an access point for testing and programming. The proposed security primitive expands the properties of a Physically Unclonable Function (PUF) to generate two different responses from a single challenge. The development of such feature was done using the ring counter circuit as the source of randomness of the PUF to increase the efficiency of the proposed PUF. The efficiency of the newly developed PUF was measured by comparing its properties with the properties of a legacy PUF. The randomness test done for the PUF shows that it has a limitation when implemented in sub-nm devices. However, when it was implemented in current 28nm silicon technology, it increases the sensitivity of the PUF as a sensor to detect malicious modification to the FPGA configuration file. Moreover, the efficiency of the developed bimodal PUF increases by 20.4% compared to the legacy PUF. This shows that the proposed security primitive proves to be more dependable and trustworthy than the previously proposed approach.Item Open Access Hardware trojan enabled denial of service attack on CAN bus(Elsevier, 2018-11-02) Bozdal, Mehmet; Randa, Maulana; Samie, Mohammad; Jennions, IanThe trend of technological advances in the vehicle industry illustrates that future cars would have added functionalities with smart features, better connectivity and autonomous behaviour. These naturally involve a higher number of Electronic Control Units (ECUs) being connected using existing conventional in-vehicle network protocols such as Controller Area Network (CAN). In this context, security of systems is now becoming a major concern while industry’s primary interest in the manufacturing of cars is reliability and safety. It is now in daily news that smart cars are being hacked due to weaknesses in their embedded electronics that provides ways of hardware attacks [1] [2]. Hardware Trojan (HT) is the threat that has been recently recognised as one of the primary sources of backdoor access that enables hackers to attack systems. As trouble, HT remains silent until a rare function/event triggers it for activation. This paper contributes to the challenge of demonstration of disruption in CAN buses raised from hidden Hardware Trojan. In this regard, it is presented how just a small size Hardware Trojan disrupts the CAN bus communication without an adversary having physical access to the bus. The attack is neither detectable via frame analysis, nor can be prevented via network segmentation; additionally, a rare triggering mechanism activates HT to process untraceable faults.Item Open Access Layered security for IEEE 1687 using a Bimodal Physically Unclonable Function(Elsevier, 2018-11-02) Randa, Maulana; Bozdal, Mehmet; Samie, Mohammad; Jennions, Ian K.In this paper, a layered security mechanism for IEEE 1687 is proposed using a new class of physically unclonable function (PUF) called Bimodal PUF. It moves beyond the conventional single-challenge single-response PUF by introducing a second response to the PUF gained from the same single challenge. As an advantage, a double-response PUF forms two-layer security solution, one at the hardware layer by limiting the access to the embedded instrument and the second one for the data layer by securing the output data that needs to be transmitted. Experiments conducted with FPGA show that such advantages come in place at a small silicon area overhead, up to 1.4%, for a 64-bit security key. This is known to be sufficient enough to resist brute-force and machine learning attack.