CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ramos, P."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fabrication of continuous ultrathin ferroelectric films by chemical solution deposition methods
    (Materials Research Society, 2008-10) Ricotea, J.; Holgado, S.; Huang, Zhaorong; Ramos, P.; Fernandez, R.; Calzada, M. L.
    The integration of ferroelectrics in nanodevices requires firstly the preparation of high-quality ultrathin films. Chemical solution deposition is considered a rapid and cost-effective technique for preparing high-quality oxide films, but one that has traditionally been regarded as unsuitable, or at least challenging, for fabricating films with good properties and thickness below 100 nm. In the present work we explore the deposition of highly diluted solutions of pure and Ca-modified lead titanates to prepare ultrathin ferroelectric films, the thickness of which is controlled by the concentration of the precursor solution. The results show that we are able to obtain single crystalline phase continuous films down to 18 nm thickness, one of the lowest reported using these methods. Below that thickness, the films start to be discontinuous, which is attributed to a microstructural instability that can be controlled by an adequate tailoring of the processing conditions. The effect of the reduction of thickness on the piezoelectric behavior is studied by piezoresponse force microscopy. The results indicate that films retain a significant piezoelectric activity regardless of their low thickness, which is promising for their eventual integration in nanodevices, for example, as transducer elements in nanoelectromechanical systems.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback