Browsing by Author "Rajendran, David John"
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item Open Access Aerodynamic performance of an un-located high-pressure turbine rotor(Cambridge University Press, 2017-07-13) Pawsey, Lucas; Rajendran, David John; Pachidis, VassiliosThe rotor sub-assembly of the high-pressure turbine of a modern turbofan engine is typically free to move downstream because of the force imbalance acting on the disc and blades following an un-located shaft failure. This downstream movement results in a change in the geometry of the rotor blade, tip seals and rim/platform seals because of the interaction of the rotor sub-assembly with the downstream vane sub-assembly. Additionally, there is a change in the leakage flow properties, which mix with the main flow because of the change in engine behaviour and secondary air system dynamics. In the present work, the changes in geometry following the downstream movement of the turbine, are obtained from a validated friction model and structural LS-DYNA simulations. Changes in leakage flow properties are obtained from a transient network source-sink secondary air system model. Three-dimensional Reynolds-averaged Navier-Stokes simulations are used to evaluate the aerodynamic effect from the inclusion of the leakage flows, tipseal domains, and downstream movement of the rotor for three displacement configurations (i.e. 0, 10 and 15 mm) with appropriate changes in geometry and leakage flow conditions. It is observed from the results that there is a significant reduction in the expansion ratio, torque and power produced by the turbine with the downstream movement of the rotor because of changes in the flow behaviour for the different configurations. These changes in turbine performance parameters are necessary to accurately predict the terminal speed of the rotor using an engine thermodynamic model. Further, it is to be noted that such reductions in turbine rotor torque will result in a reduction of the terminal speed attained by the rotor during an un-located shaft failure. Therefore the terminal speed of the rotor can be controlled by introducing design features that will result in the rapid rearward displacement of the turbine rotor.Item Open Access Ammonia for civil aviation: a design and performance study for aircraft and turbofan engine(Elsevier, 2024-04-06) Sasi, Sarath; Mourouzidis, Christos; Rajendran, David John; Roumeliotis, Ioannis; Pachidis, Vassilios; Norman, JustinThe 2050 net zero targets for aviation to decarbonize the industry means that solutions need to be delivered that can help achieve those targets. Transitioning to zero carbon aviation fuel is an effective solution to achieve those targets. This research article aims to highlight the potential design and performance implications of using Ammonia as a zero-carbon fuel for civil aviation through a retrofit case study conducted for an Airbus A350-1000 equivalent aircraft. The impacts on both turbofan design and aircraft payload-range capability are presented. A feasibility study of using Ammonia as a Hydrogen carrier for civil aviation is also presented. The turbofan design impacts, and payload range capability are assessed using Cranfield University’s in-house gas turbine performance tool TURBOMATCH and NASA FLOPS respectively. A 3-point turbofan cycle design strategy is utilized for redesigning turbofan engine cycles using Ammonia as a fuel. Ammonia fuel conditioning assessment is made using REFPROP to investigate its impact on turbofan design. Utilizing pure Ammonia as an aircraft fuel can provide significant turbofan redesign opportunities. Fuel conditioning assessment revealed that for a 430 kN thrust class engine, 2.1 MW of thermal power is required to condition Ammonia fuel at take-off. As a result, various strategies to condition the fuel and its significant impact on turbofan design are presented indicating fuel conditioning as a major design driver for Ammonia fuelled turbofan engines in the future. Although upon initial preliminary assessment, Ammonia utilized as a Hydrogen carrier showcased potential by providing additional mission range capability when compared to a pure Ammonia burning aircraft, the significant thermal energy required to crack (decompose) Ammonia into Hydrogen highlighted the challenges at aircraft mission level and Hydrogen turbofan design implications. It is found that energy requirement (power) to crack Ammonia into Hydrogen are significant which is approximately an order of magnitude higher than Ammonia fuel conditioning itself.Item Open Access Characterisation of turbine behaviour for an engine overspeed prediction model(Elsevier, 2017-11-28) Pawsey, Lucas; Rajendran, David John; Pachidis, VassiliosThis paper focuses on the characterisation of turbine overspeed behaviour to be integrated into an engine overspeed model capable of predicting the terminal speed of the high pressure turbine (HPT) in the event of a high pressure shaft failure. The engine considered in this study features a single stage HPT with a shrouded contra-rotating rotor with respect to the single stage intermediate pressure turbine (IPT). The HPT performance is characterised in terms of torque and mass flow function for a range of expansion ratios at various non-dimensional rotational speeds (NH), up to 200% of the design value. Additionally, for each HPT expansion ratio and NH, the change in capacity of the downstream IPT, for different IPT non-dimensional rotational speeds (NI), also needs to be characterised due to the extremely positive incidence angle of the flow from the upstream rotor. An automated toolkit is developed to generate these characteristic maps for both the HPT and IPT. An unlocated high pressure shaft failure will result in rearward movement of the rotor sub-assembly. This causes changes in the rotor tip and rim seal regions, and in the rim seal leakage flow properties. Therefore, in the present work, a high fidelity characterisation of turbine behaviour with the inclusion of tip and rim seals is carried out at three different displacement locations, 0 mm, 10 mm and 15 mm, to improve terminal speed estimation. Furthermore, there is a possibility of damage to the tip seal fins of the HPT rotor due to unbalance in the spool that may result in contact between the rotor aerofoil tip and the casing. Consequently, another set of characteristics are generated with damaged tip fins at each displacement location. It is observed from the characteristics that the torque of the HPT rotor decreases with increasing NH. The HPT mass flow function initially decreases and then increases with an increase in NH. The IPT mass flow function initially remains similar and then decreases with increase in NH above values of 150%. The HPT rotor torque and IPT mass flow function decrease with rearward movement of the HPT rotor sub-assembly for all values of NH. With worn tip seal fins all parameters mentioned previously are lower than in the nominal undamaged case. The high fidelity characterisation of turbines that follows the sequence of events after a shaft failure, as described in this work, can provide accurate predictions of terminal speed and thus act as a tool for testing design modifications that can result in better management and control of the over-speed event.Item Open Access Control of flow separation in a high-speed compressor cascade through acoustic excitation(AIAA, 2023-06-08) Coskun, Seyfettin; Rajendran, David John; Pachidis, Vassilios; Bacic, MarkoThe use of acoustic excitation for controlling flow separation in a NACA65-K48 linear compressor cascade operating at aircraft engine representative Ma = 0.67 and chord-based Re = 560,000 is investigated numerically. Improved Delayed Detached Eddy Simulation (IDDES) is used for numerical simulations. The linear compressor cascade passage under investigation is subject to severe secondary flows that are the fundamental loss mechanisms in axial compressors. Secondary flows such as corner separation cover a significant portion of the blade height of the linear compressor cascade (LCC) because of its low aspect ratio. These losses result in passage blockage which results in performance degradation. In the current study, the effect of external acoustic excitation on flow separation characteristics in the compressor passage is examined. The effectiveness of acoustic excitation is investigated for two main excitation parameters: excitation frequency and amplitude. The dominant frequencies in the uncontrolled flow frequency spectra are used as the initial excitation frequencies whilst a range of excitation amplitudes are considered. It has been observed that when the acoustic excitation is applied with a frequency in the range of the most dominant frequency in the uncontrolled flow and an excitation amplitude above a threshold amplitude, the flow field can be modulated substantially to recover the cascade performance.Item Open Access Control of flow separation over an aerofoil by external acoustic excitation at a high Reynolds number(AIP Publishing, 2024-01-05) Coskun, Seyfettin; Rajendran, David John; Pachidis, Vassilios; Bacic, MarkoThe effectiveness of acoustic excitation as a means of flow control at high Reynolds number turbulent flows is investigated numerically by using Improved Delayed Detached Eddy Simulations. Previous studies on low Reynolds number laminar flows have shown that acoustic excitation can substantially suppress flow separation for specific effective frequency and amplitude ranges. However, the effect of acoustic excitation on higher Reynolds number turbulent flow separation has not yet been explored due to limitations on appropriate fidelity computational methods or experimental facility constraints. Therefore, this paper addresses this research gap. A NACA (National Advisory Committee for Aeronautics) 0015 aerofoil profile at 1 million Reynolds number based on the aerofoil chord length is used for the investigations. Acoustic excitation is applied to the baseline flow field in the form of transient boundary conditions at the computational domain inlet. A parametric study revealed that the effective sound frequency range shows a Gaussian distribution around the frequency of the dominant disturbances in the baseline flow. A maximum of ∼ 43% increase in lift-to-drag ratio is observed for the most effective excitation frequency F+ = 1.0 at a constant excitation amplitude of Am = 1.8%. The effect of excitation amplitude follows an asymptotic trend with a maximum effective excitation amplitude above which the gains are not significant. A fully reattached flow is observed for the highest excitation level considered (Am = 10%), that results in ∼ 120% rise in aerofoil lift-to-drag coefficient. Overall, the findings of the current work demonstrate the higher Reynolds number effectiveness of acoustic excitation on separated turbulent flows, thereby paving the way for application in realistic flow scenarios observed in aircraft and gas turbine engine flow fields.Item Open Access Development of a research model to study the operability of a variable pitch fan aero engine in reverse thrust(Global Power and Propulsion Society, 2020-09-09) Rajendran, David John; Bentley, David; Azamar Aguirre, Hasani; Tunstall, Richard; Pachidis, VassiliosA rationale for the level of model fidelity required to provide the most representative flow field information to ascertain the feasibility of using a Variable Pitch Fan (VPF) in a modern high bypass ratio aero engine to generate reverse thrust is described in this paper. This is done by comparing the 3D RANS flow field solution for a newly developed reverse flow VPF design from two research models: i) isolated engine model in which the bypass duct, guide vanes, splitter and VPF are wrapped in an axisymmetric nacelle and placed in a generic far-field domain and b) integrated model in which the engine is installed to an airframe in landing configuration through a pylon and placed in a far-field domain bound by a rolling runway. The flow field solution obtained at an aircraft landing speed of 80 knots indicates that even though both models can predict the general flow patterns, there are substantial differences in parameters such as the amount of reverse stream, circumferential distribution of flow properties and flow development downstream of the engine. These differences impact the levels of reverse thrust generated, flow distortion entering the core engine and resultant airframe forces. This study makes the case that it is necessary to use an integrated model that includes a full engine nacelle installed on an airframe, to answer design questions for engineering the VPF system to generate reverse thrust.Item Open Access Estimation of resultant airframe forces for a variable pitch fan operating in reverse thrust mode(American Society of Mechanical Engineers, 2022-10-28) Rajendran, David John; Tunstall, Richard; Pachidis, VassiliosThe resultant forces with a reverse thrust Variable Pitch Fan (VPF) during the aircraft landing run are computed from the installed reverse thrust flow field obtained from an airframe-engine-VPF research model. The research model features a reverse flow capable VPF design in a future, geared, high-bypass ratio 40000 lbf engine as installed onto a twin-engine airframe in landing configuration, complete with a rolling ground plane to mimic the runway. The reverse thrust flow field during the aircraft landing run is obtained from 3D RANS/URANS solutions of the model. The evolution of the installed dynamic reverse thrust flow field is characterized by the interaction of the VPF induced reverse flow with the free stream. Several flow features like reverse flow wash-down by the freestream, external swirling helical flow development, pylon flow obstruction, 180° flow turn into the engine, subsequent separated flows, wake interactions and multi-pass recirculating flows are observed. The resultant airframe forces due to the reverse thrust flow field is estimated by adaptations of momentum based far-field and near-field methods. In the active thrust reverser engagement regime of 140 to 40 knots, the VPF generates a sufficient axial airframe decelerating force in the range of 45% to 8% of maximum take-off thrust. A drag decomposition study and a notional ‘blocked-fan’ analysis are described to understand the stack-up of the axial decelerating force. Additionally, the resultant force has a landing speed dependent lateral force component because of the pylon obstruction induced flow non-uniformity. A beneficial downforce component due to upward deflection of streamlines is also observed. The quantification of the resultant forces from the baseline installed airframe-engine-VPF reverse thrust flow field is a necessary step to explore the feasibility of the VPF reverse thrust system for future efficient turbofan architectures, understand force generation mechanisms and to identify areas for subsequent design improvement.Item Open Access Estimation of resultant airframe forces for a variable pitch fan operating in reverse thrust mode(American Society of Mechanical Engineers, 2022-10-14) Rajendran, David John; Tunstall, Richard; Pachidis, VassiliosThe resultant forces with a reverse thrust variable pitch fan (VPF) during the aircraft landing run are computed from the installed reverse thrust flow field obtained from an airframe-engine-VPF research model. The research model features a reverse flow capable VPF design in a future, geared, high-bypass ratio 40,000 lbf engine as installed onto a twin-engine airframe in landing configuration, complete with a rolling ground plane to mimic the runway. The reverse thrust flow field during the aircraft landing run is obtained from the three-dimensional RANS/URANS solutions of the model. The evolution of the installed dynamic reverse thrust flow field is characterized by the interaction of the VPF-induced reverse flow with the freestream. Several flow features like reverse flow wash-down by the freestream, external swirling helical flow development, pylon flow obstruction, 180 deg flow turn into the engine, subsequent separated flows, wake interactions, and multipass recirculating flows are observed. The resultant airframe forces due to the reverse thrust flow field are estimated by adaptations of momentum-based far-field and near-field methods. In the active thrust reverser engagement regime of 140 to 40 knots, the VPF generates a sufficient axial airframe decelerating force in the range of 45% to 8% of maximum takeoff thrust. A drag decomposition study and a notional “blocked-fan” analysis are described to understand the stack-up of the axial decelerating force. Additionally, the resultant force has a landing speed-dependent lateral force component because of the pylon obstruction-induced flow nonuniformity. A beneficial downforce component due to upward deflection of streamlines is also observed. The quantification of the resultant forces from the baseline installed airframe-engine-VPF reverse thrust flow field is a necessary step to explore the feasibility of the VPF reverse thrust system for future efficient turbofan architectures, understand force generation mechanisms, and to identify areas for subsequent design improvement.Item Open Access Fan flow field in an installed variable pitch fan operating in reverse thrust for a range of aircraft landing speeds(ASME, 2019-09-20) Rajendran, David John; Pachidis, VassiliosThe installed flow field for a Variable Pitch Fan (VPF) operating in reverse thrust for the complete aircraft landing run is described in this paper. To do this, a VPF design to generate reverse thrust by reversing airflow direction is developed for a representative 40000 lbf modern high bypass ratio engine. Thereafter, to represent the actual flow conditions that the VPF would face, an engine model that includes the nacelle, core inlet splitter, outlet guide vanes, bypass nozzle, core exhaust duct, aft-body plug and core nozzle is designed. The engine model with the VPF is attached to a representative airframe in landing configuration to include the effects of installation. A rolling ground plane that mimics the runway during the landing run is also included to complete the model definition. 3D RANS solutions are carried out for two different VPF stagger angle settings and rotational speeds to obtain the fan flow field. The dynamic installed VPF flow field is characterized by the interaction of the free stream and the reverse stream flows. The two streams meet in a shear layer in the fan passages and get deflected radially outwards before turning back onto themselves. The flow field changes with stagger setting, fan rotational speed and the aircraft landing speed because of the consequent changes in the momentum of the two streams. The description of the installed VPF flow field as generated in this study is necessary to: a) qualify VPF designs that are typically designed by considering only the uninstalled static flow field b) choose the VPF operating setting for different stages of the aircraft landing run.Item Open Access Flow distortion into the core engine for an installed variable pitch fan in reverse thrust mode(American Society of Mechanical Engineers, 2021-01-11) Rajendran, David John; Pachidis, VassiliosThe flow distortion at core engine entry for a Variable Pitch Fan (VPF) in reverse thrust mode is described from a realistic flow field obtained using an integrated airframe-engine model. The model includes the VPF, core entry splitter, complete bypass nozzle flow path wrapped in a nacelle and installed to an airframe in landing configuration through a pylon. A moving ground plane to mimic the rolling runway is included. 3D RANS solutions are generated at two combinations of VPF stagger angle and rotational speed settings for the entire aircraft landing run from 140 to 20 knots. The internal reverse thrust flow field is characterized by bypass nozzle lip separation, pylon wake and recirculation of flow turned back from the VPF. A portion of the reverse stream flow turns 180° with separation at the splitter leading edge to feed the core engine. The core engine feed flow exhibits circumferential and radial non-uniformities that depend on the reverse flow development at different landing speeds. The temporal dependence of the distorted flow features is also explored by an URANS analysis. Total pressure and swirl angle distortion descriptors, as defined by the Society of Automotive Engineers (SAE) S-16 committee, and, total pressure loss into the core engine are described for the core feed flow at different operating conditions and landing speeds. It is observed that the radial intensity of total pressure distortion is critical to core engine operation, while the circumferential intensity is within acceptable limits. Therefore, the baseline sharp splitter edge is replaced by two larger rounded splitter edges of radii, ∼0.1x and ∼0.2x times the core duct height. This was found to reduce the radial intensity of total pressure distortion to acceptable levels. The description of the installed core feed flow distortion, as described in this study, is necessary to ascertain stable core engine operation, which powers the VPF in reverse thrust mode.Item Open Access Flow distortion into the core engine for an installed variable pitch fan in reverse thrust mode(ASME, 2021-02-26) Rajendran, David John; Pachidis, VassiliosThe flow distortion at core engine entry for a Variable Pitch Fan (VPF) in reverse thrust mode is described from a realistic flowfield obtained using an integrated airframe-engine-VPF research model. 3D RANS solutions are generated for the complete aircraft landing run from 140 to 20 knots at different VPF settings. The internal reverse thrust flowfield is characterized by nozzle lip separation, pylon wake and recirculation of flow turned back from the VPF. A portion of the reverse flow turns 180° with separation at the splitter edge to feed the core engine. The core feed flow exhibits circumferential and radial non-uniformities that depend on the reverse flow development at different landing speeds. The temporal dependence of the distorted flow features is also explored by an URANS analysis. Total pressure and swirl angle distortion descriptors, and total pressure loss are described for the core feed flow at different VPF settings and landing speeds. It is observed that the radial intensity of total pressure distortion is critical to core engine operation, while the circumferential intensity is within acceptable limits. Therefore, the baseline sharp splitter edge is replaced by two larger rounded splitter edges of radii, ∼0.1x and ∼0.2x times the core duct height. This was found to reduce the radial intensity of total pressure distortion to acceptable levels. The description of the installed core feed flow distortion, as in this study, is necessary to ascertain stable core engine operation, which powers the VPF in reverse thrust mode.Item Open Access Flow field explorations in a boundary layer pump rotor for improving 1D design codes(MDPI, 2023-02-03) Freschi, Rosa; Bakogianni, Agapi; Rajendran, David John; Anselmi Palma, Eduardo; Talluri, Lorenzo; Roumeliotis, IoannisBoundary layer pumps, although attractive due to their compactness, robustness and multi-fluid and phase-handling capability, have been reported to have low experimental efficiencies despite optimistic predictions from analytical models. A lower-order flow-physics-based analytical model that can be used as a 1D design code for sizing and predicting pump performance is described. The rotor component is modelled by means of the Navier–Stokes equations as simplified using velocity profiles in the inter-disk gap, while the volute is modelled using kinetic-energy-based coefficients inspired by centrifugal pumps. The code can predict the rotor outlet and overall pump pressure ratio with an around 3% and 10% average error, respectively, compared to the reference experimental data for a water pump. Moreover, 3D RANS flow-field explorations of the rotor are carried out for different inter-disk gaps to provide insights concerning the improvement of the 1D design code for the better prediction of the overall pump performance. Improvements in volute loss modelling through the inclusion of realistic flow properties at the rotor outlet rather than the detailed resolution of the velocity profiles within the rotor are suggested as guidelines for improved predictions. Such improved design codes could close the gap between predictions and experimental values, thereby paving the way for the appropriate sizing of boundary layer pumps for several applications, including aircraft thermal management.Item Open Access Insights into the flow field and performance of a boundary layer pump(American Society of Mechanical Engineers, 2023-10-19) Rajendran, David John; Palaveev, Kyril; Anselmi, Eduardo; Santhanakrishnan, Mani; Pachidis, VassiliosA flow field analysis of a realistic, integrated, multi-disc boundary layer pump as is necessary for investigating the reasons for typically quoted low efficiencies in such pumps is described. The study focuses on the 3D RANS solutions of a water boundary layer pump model created to replicate a design which consists of 170 discs and a volute channel. A baseline study is performed to investigate the rotor-only and volute-only flow fields and identify the losses in each as separate systems. Thereafter, an integrated model is characterized for different operating conditions. The flow fields of all three models are discussed and the results of the integrated model are compared to the experimental data. The results from the rotor-only model confirm the typically made claim that the rotor efficiency is relatively high, which in this case is 87% at the design point. The volute on its own indicated a hydraulic efficiency of ~97%. However, the integrated model yielded a rotor efficiency of ~74% and an overall pump efficiency of 51% at the design point, clearly outlining the fact that the effect of the volute integrated with the rotor is the reason for both the rotor and pump efficiency degradation. The reason for this drop in efficiency is discussed by highlighting the change in the flow topologies. The insights into the flow field and the identification of the reason for inefficiencies using a separated component analysis approach provides directions for avenues in which design improvements need to be attempted.Item Open Access Multidisciplinary design and manufacturing of a Tesla pump prototype(Elsevier, 2024-07-29) Bakogianni, Agapi; Anselmi, Eduardo; Rajendran, David John; Bufalari, L.; Talluri, L.; Ungar, P.; Fiaschi, D.To widen the range of hydraulic efficiencies of boundary layer pumps, a full design methodology has been proposed in order to identify critical issues for their performance and manufacturing. The methodology integrated a 2D numerical code, CFD and FEM analyses, coupled with manufacturing assessments as feedback mechanism. Considering budget constraints and in-house machining capabilities, a quick first prototype was produced. Analyses of the design are pointing out that the volute design initially chosen will not help to achieve an increase in the overall efficiency. The curves of head achieved with 2D and CFD are in agreement, but the latter determines the losses with larger accuracy, thus achieving lower values of head. The 2D model shows limits in the determination of the efficiency, effectively corrected by the CFD analysis. Critical parameters as disc thickness and gap between discs will require a more sophisticated assembly process and materials outsource. The proposed methodology could be used as a reference for the design and performance evaluation of this kind of turbomachinery in the future. The procedure lead to a prototype design, whose optimal efficiency slightly lower than 30 % was achieved at 5000 rpm with 0.3 mm disks gap.Item Embargo On the flow physics during the transition of a variable pitch fan from nominal operation to reverse thrust mode(American Society of Mechanical Engineers, 2023-12-01) Vitlaris, Dimitrios; Rajendran, David John; Tunstall, Richard; Whurr, John; Pachidis, VassiliosThe flow field during the transition of variable pitch fans (VPFs) from nominal operation to reverse thrust mode at typical “Approach Idle” engine power setting and aircraft touchdown speed of 140 knots is described in this work. An integrated airframe-engine-VPF research model that features a future 40,000 lbf geared high bypass ratio engine installed on a twin-engine airframe in landing configuration is used to explore the flow field in a fully transient unsteady Reynolds-averaged Navier–Stokes (URANS) simulation with imposed wall motion. A novel methodology that implements an adaptation of a mesh displacement equation to mimic the fan blade airfoil rotation is developed. The implementation of this method with gradual, small-step deformation along with an automated mesh update routine enables a high quality, near “real-time” simulation of the complete transition. The flow field during transition is characterized by the evolution from full typical forward flow through the engine to the development of massive recirculation regions at the feather pitch setting and finally to development of a reverse flow from the bypass nozzle to the fan passages. In the paper, the transient development of the various flow features through different stations of the engine flow path apropos the fan blade airfoil rotation to reverse thrust mode are discussed in detail. Also, the temporal development of the mass flow ingested through the engine, airframe decelerating force, and distorted flow at the core engine inlet are described. A hitherto unresolved fan power peaking during the middle of the transition and higher power requirement at reverse thrust mode is captured. The effect of fan rotational speed in terms of engine power setting and the aircraft touchdown velocity on the transition flow physics is explored. A comparison of this fully transient approach with discrete steady-state runs for different stagger angle settings is presented. The flow physics during transition to reverse thrust mode as described in this study is critical in understanding the feasibility of using VPF for reverse thrust in future aircraft. The new capability to study the transition in a fully transient simulation can be used as a design development aid to define design and control characteristics of the reverse thrust VPF.Item Open Access On the use of an inflatable rubber lip to improve the reverse thrust flow field in a variable pitch fan(American Society of Mechanical Engineers, 2021-07-29) Rajendran, David John; Pachidis, VassiliosThe installed Variable Pitch Fan (VPF) reverse thrust flow field is obtained from the flow solution of an integrated airframe-engine-VPF research model for the complete reverser engagement regime during the aircraft landing run. The reverse thrust flow field indicates that the reverse flow out of the nacelle inlet is washed downstream by the freestream. Consequently, reverse flow enters the engine through the bypass nozzle from a 180° turn of the washed-down stream. This results in a region of separated flow at the nozzle lip that acts as a blockage to the reverse flow entry into the engine. To mitigate the blockage issue, a smooth guidance of the reverse flow into the engine can be achieved by using an inflatable rubber lip that would define a bell-mouth like geometric feature with a round radius at the nacelle exit. In nominal engine operation, the rubber lip would be stowed flush within the contours of the nacelle surface. The design space of the rubber lip is studied by considering different rounding radii and locations of the turn radius with respect to the nacelle trailing edge. It is observed that a rounding radius of 0.1x nacelle length is sufficient to reduce the blockage and increase the ingested reverse flow by 47% to 18% in the 140 to 40 knots landing speed range. The inflatable rubber lip represents a design modification that can improve VPF reverse thrust operation, in cases where an augmentation of reverse thrust capability is desired