CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Rajamudili, Kuladeep"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Control of meltpool shape in laser welding
    (Springer, 2024-03-05) Suder, Wojciech; Chen, Xin; Rico Sierra, David; Chen, Guangyu; Wainwright, James; Rajamudili, Kuladeep; Rodrigues Pardal, Goncalo; Williams, Stewart
    In laser welding, the achievement of high productivity and precision is a relatively easy task; however, it is not always obvious how to achieve sound welds without defects. The localised laser energy promotes narrow meltpools with steep thermal gradients, additionally agitated by the vapour plume, which can potentially lead to many instabilities and defects. In the past years, there have been many techniques demonstrated on how to improve the quality and tolerance of laser welding, such as wobble welding or hybrid processes, but to utilise the full potential of lasers, we need to understand how to tailor the laser energy to meet the process and material requirements. Understanding and controlling the melt flow is one of the most important aspects in laser welding. In this work, the outcome of an extensive research programme focused on the understanding of meltpool dynamics and control of bead shape in laser welding is discussed. The results of instrumented experimentation, supported by computational fluid dynamic modelling, give insight into the fundamental aspects of meltpool formation, flow direction, feedstock melting and the likelihood of defect formation in the material upon laser interaction. The work contributes to a better understanding of the existing processes, as well as the development of a new range of process regimes with higher process stability, improved efficiency and higher productivity than standard laser welding. Several examples including ultra-stable keyhole welding and wobble welding and a highly efficient laser wire melting are demonstrated. In addition, the authors present a new welding process, derived from a new concept of the meltpool flow and shape control by dynamic beam shaping. The new process has proven to have many potential advantages in welding, cladding and repair applications.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Corrosion mechanisms of plasma welded Nickel aluminium bronze immersed in seawater
    (Elsevier, 2024-03-23) Dobson, Tamsin; Larrosa, Nicolas; Reid, Mark; Rajamudili, Kuladeep; Ganguly, Supriyo; Coules, Harry
    Nickel Aluminium Bronzes (NAB) are copper-based multi-phase alloys used extensively in marine applications. NAB is vulnerable to seawater corrosion, however the interaction between its corrosion mechanisms and real-world factors including biofouling, weld microstructure and residual stress are poorly understood. Seawater corrosion tests were performed on plasma-welded NAB in laboratory and marine environments, demonstrating that the retained β’ phase in the Heat Affected Zone (HAZ) experiences Selective Phase Corrosion (SPC), whereas crevice corrosion associated with SPC of the κIII phase occurs at biofouled and stressed areas of parent material. These factors, seldom simulated in physical tests, severely impact NAB’s corrosion resistance.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impact of cold-wire gas metal arc welding (CW-GMAW) parameters on microstructure and microhardness characteristics in repairing S275JR structural steel
    (Springer, 2025-03-23) Musa, Zahraddeen; Ganguly, Supriyo; Suder, Wojciech; Igwemezie, Victor; Rajamudili, Kuladeep
    This study investigates the influence of adding a cold wire during gas metal arc welding (CW-GMAW) for repair of S275JR structural steel. The research is aimed at improving repair productivity through increased deposition rates with enhanced performance. During weld repair, multiple passes induce large number of thermal cycles and a huge thermal gradient on the material which has an adverse effect on the material’s properties. This is largely due to the microstructural changes that occur during the process. In this work, a systematic approach has been adopted to explore the effects of varying gas metal arc welding (GMAW) parameters, including wire feed rate, welding current, voltage, travel speed, and specifically cold-wire feed speed on the heat affected zone (HAZ) microstructure and hardness. Macrostructural examination highlights significant alterations in the heat affected zone (HAZ) region, with marked microhardness changes in both WM and HAZ. Cold-wire addition led to a reduction in the HAZ area, depth of weld metal penetration, and significantly reduced the impact of imposing thermal cycles on the HAZ of the welded samples. Additionally, microstructural analysis was conducted using a standard optical microscope to correlate the observed hardness variations with microstructural transformations in the weld metal and heat affected zone (HAZ). The findings reveal that specific combinations of CW-GMAW parameters can significantly influence the microstructure and thereby hardness, suggesting that with careful control of these parameters, it would be possible to do faster repair with minimal loss of integrity for critical structural steels.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback