Browsing by Author "Quinton, John Norman"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access The effect of incorporating slurries on the transport of faecal coliforms in overland flow.(Blackwell Publishing Ltd., 2003) Quinton, John Norman; Tyrrel, Sean F.; Ramos, María C.Rainfall simulation experiments on a laboratory soil flume were conducted to test the hypothesis that the incorporation of slurry into the soil would reduce bacterial transport in overland flow. Presumptive faecal coliform (PFCs) concentrations were higher in the runoff from the surface applied treatment than from the incorporated treatments. The transport of PFCs and organic sediment were strongly correlated, with values of r ranging from 0.72 to 0.91.Item Open Access Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.(Elsevier, 2006-01) Ramos, María C.; Quinton, John Norman; Tyrrel, Sean F.The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h−1 were conducted in a sandy loam soil packed into soil flumes (2.5 m long×1 m wide) at a bulk density of 1400 kg m−3, with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9×104 to 1.1×106 PFC 100 mL−1, depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.Item Open Access How the composition of sandstone matrices affects rates of soil formation(Elsevier, 2021-07-10) Evans, Daniel L.; Quinton, John Norman; Tye, A. M.; Rodés, Á.; Rushton, J. C.; Davies, J. A. C.; Mudd, S. M.Soils deliver multiple ecosystem services and their long-term sustainability is fundamentally controlled by the rates at which they form and erode. Our knowledge and understanding of soil formation is not commensurate with that of soil erosion, in part due to the difficulty of measuring the former. However, developments in cosmogenic radionuclide accumulation models have enabled soil scientists to more accurately constrain the rates at which soils form from bedrock. To date, all three major rock types – igneous, sedimentary and metamorphic lithologies – have been examined in such work. Soil formation rates have been measured and compared between these rock types, but the impact of rock characteristics on soil formation rates, such as rock matrices and mineralogy, have seldom been explored. In this UK-based study, we used cosmogenic radionuclide analysis to investigate whether the lithological variability of sandstone governs pedogenesis. Soil formation rates were measured on two arable hillslopes at Woburn and Hilton, which are underlain by different types of arenite sandstone. Rates were faster at Woburn, and we suggest that this is due to the fact that the Woburn sandstone formation is less cemented that that at Hilton. Similarly, rates at Woburn and Hilton were found to be faster than those measured at two other sandstone-based sites in the UK, and faster than those compiled in a global inventory of cosmogenic studies on sandstone-based soils. We suggest that the cementing agents present in matrix-abundant wackes studied previously may afford these sandstones greater structural integrity and resistance to weathering. This work points to the importance of factoring bedrock matrices into our understanding of soil formation rates, and the biogeochemical cycles these underpinItem Open Access National-scale geodata describe widespread accelerated soil erosion(Elsevier, 2020-04-20) Benaud, Pia; Anderson, Karen; Evans, Martin; Farrow, Luke; Glendell, Miriam; James, Michael R.; Quine, Timothy Andrew; Quinton, John Norman; Rawlins, Barry G.; Rickson, R. Jane; Brazier, Richard E.Accelerated soil erosion can result in substantial declines in soil fertility and has devastating environmental impacts. Consequently, understanding if rates of soil erosion are acceptable is of local and global importance. Herein we use empirical soil erosion observations collated into an open access geodatabase to identify the extent to which existing data and methodological approaches can be used to develop an empirically-derived understanding of soil erosion in the UK (by way of an example). The findings indicate that whilst mean erosion rates in the UK are low, relative to the rest of Europe for example, 16% of observations on arable land were greater than the supposedly tolerable rate of 1 t ha−1 yr−1 and maximum erosion rates were as high as 91.7 t ha−1 yr−1. However, the analysis highlights a skew in existing studies towards locations with a known erosion likelihood and methods that are biased towards single erosion pathways, rather than an all-inclusive study of erosion rates and processes. Accordingly, we suggest that future soil erosion research and policy must address these issues if an accurate assessment of soil erosion rates at the national-scale are to be established. The interactive geodatabase published alongside this paper offers a platform for the simultaneous development of soil erosion research, formulation of effective policy and better protection of soil resourcesItem Open Access Testing the utility of structure from motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion(Wiley, 2017-03-08) Glendell, Miriam; McShane, Gareth; Farrow, Luke; James, Mike R.; Quinton, John Norman; Anderson, Karen; Evans, Martin; Benaud, Pia; Rawlins, Barry; Morgan, David; Jones, Lee; Kirkham, Matthew; DeBell, Leon; Quine, Timothy; Lark, Murray; Rickson, R. Jane; Brazier, Richard E.Quantifying the extent of soil erosion at a fine spatial resolution can be time consuming and costly; however, proximal remote sensing approaches to collect topographic data present an emerging alternative for quantifying soil volumes lost via erosion. Herein we compare terrestrial laser scanning (TLS), and both aerial (UAV) and ground-based (GP) SfM derived topography. We compare the cost-effectiveness and accuracy of both SfM techniques to TLS for erosion gully surveying in upland landscapes, treating TLS as a benchmark. Further, we quantify volumetric soil loss estimates from upland gullies using digital surface models derived by each technique and subtracted from an interpolated pre-erosion surface. Soil loss estimates from UAV and GP SfM reconstructions were comparable to those from TLS, whereby the slopes of the relationship between all three techniques were not significantly different from 1:1 line. Only for the TLS to GP comparison the intercept was significantly different from zero, showing that GP is more capable of measuring the volumes of very small erosion features. In terms of cost-effectiveness in data collection and processing time, both UAV and GP were comparable with the TLS on a per-site basis (13.4 and 8.2 person-hours versus 13.4 for TLS); however GP was less suitable for surveying larger areas (127 person-hours per ha-1 versus 4.5 for UAV and 3.9 for TLS). Annual repeat surveys using GP were capable of detecting mean vertical erosion change on peaty soils. These first published estimates of whole gully erosion rates (0.077 m a-1) suggest that combined erosion rates on gully floors and walls are around three times the value of previous estimates, which largely characterise wind and rainsplash erosion of gully walls.