Browsing by Author "Prudhomme, Christel"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change(Cranfield University, 2018-05-29 16:58) Rio, Marlène; Rey Vicario, Dolores; Prudhomme, Christel; Holman, IanThis dataset contains the data associated with the paper "Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change", published in Agricultural Water ManagementItem Open Access Evaluation of changing surface water abstraction reliability for supplemental irrigation under climate change(Elsevier, 2018-05-28) Rio, M.; Rey, Dolores; Prudhomme, Christel; Holman, Ian P.In many temperate parts of the world, supplemental irrigation is crucial to assure both crop yield and quality. Climate change could increase the risks of irrigation being restricted by increasing crop water requirements and/or decreasing water availability. In England, water abstraction for irrigation is limited by maximum annual volumetric limits, as specified in the abstraction licences, and surface water abstraction restrictions imposed by the regulator during drought. This paper assesses how climate change might impact future irrigation abstraction reliability from surface water in England. Firstly, the probability of annual abstraction being close to the maximum licence limit was estimated for the baseline (1961–1990) and future (2071–2098) periods in each catchment based on observed relationships between annual weather and irrigation abstraction in three licence usage groups. Secondly, the current river discharge triggers for mandatory drought restrictions were used to assess the annual probability of surface water abstraction restrictions being imposed by the regulator in each period. Results indicate significant future increases in irrigated abstraction licence use due to an increase in aridity, particularly in the most productive agricultural areas located in eastern and southern England, assuming no adaptation. The annual probability of having less than 20% licence headroom in the highest usage group is projected to exceed 0.7 in 45% of the management units, mostly in the south and east. In contrast, irrigators in central and western England face an increased risk of drought restrictions due to the lower buffering capacity of groundwater on river flows, with the annual probability of mandatory drought restrictions reaching up to 0.3 in the future. Our results highlight the increasing abstraction reliability risks for irrigators due to climate change, and the need for the farming community and the regulator to adapt and collaborate to mitigate the associated impacts.Item Open Access G-CLASS: geosynchronous radar for water cycle science - orbit selection and system design(IET, 2019-11-28) Hobbs, Stephen E.; Guarnieri, Andrea Monti; Broquetas, Antoni; Calvet, Jean-Christophe; Casagli, Nicola; Chini, Marco; Ferretti, Rossella; Nagler, Thomas; Pierdicca, Nazzareno; Prudhomme, Christel; Wadge, GeoffThe mission geosynchronous – continental land atmosphere sensing system (G-CLASS) is designed to study the diurnal water cycle, using geosynchronous radar. Although the water cycle is vital to human society, processes on timescales less than a day are very poorly observed from space. G-CLASS, using C-band geosynchronous radar, could transform this. Its science objectives address intense storms and high resolution weather prediction, and significant diurnal processes such as snow melt and soil moisture change, with societal impacts including agriculture, water resource management, flooding, and landslides. Secondary objectives relate to ground motion observations for earthquake, volcano, and subsidence monitoring. The orbit chosen for G-CLASS is designed to avoid the geosynchronous protected region and enables integration times of minutes to an hour to achieve resolutions down to ∼20 m. Geosynchronous orbit (GEO) enables high temporal resolution imaging (up to several images per hour), rapid response, and very flexible imaging modes which can provide much improved coverage at low latitudes. The G-CLASS system design is based on a standard small geosynchronous satellite and meets the requirements of ESA's Earth Explorer 10 call.Item Open Access The influence of catchment characteristics on river flow variability(Cranfield University, 2015-08-05) Chiverton, Andrew; Hannaford, Jamie; Holman, Ian P.; Prudhomme, Christel; Hess, Tim M.; Bloomfield, JohnHydrology is yet to fully understand the role that catchment characteristics have in determining a river’s response to precipitation variability. This thesis assesses the influence that catchment characteristics have on modulating a river’s response to changes in precipitation throughout the UK. Central to this aim is the concept of the precipitation- to-flow relationship (the transformation of precipitation into river flow), which is characterised using the Variogram, a way of indexing temporal dependence (i.e. the average relationship between river flow on a given day and river flow on the previous days). Firstly, 116 catchments were grouped into four clusters, based on the shape of their variogram, which significantly differed in their catchment characteristics demonstrating that catchment characteristics control how, on average, precipitation is transformed into river flow. Furthermore, over 70% of un-gauged catchments could be clustered correctly using information about their soil type, slope and the percentage of arable land. Secondly, a new method which identifies the changes in the variogram parameters over 5-year overlapping moving windows was developed to investigate temporal changes in the variogram parameters. This method was successfully demonstrated to detect changes in multiple aspects of artificially perturbed river flow time series (e.g. seasonality, linear changes and variability). On average >70% of the variability in the catchment variogram parameters was explained by the precipitation characteristics, although there was large variability between catchments. Finally, the influence that the catchment characteristics have on the temporal changes in the variogram parameters was analysed, demonstrating that rivers in relatively impermeable upland catchments have a relationship with precipitation which is closer to linear and less variable than lowland, permeable catchments. This thesis contributes significant new knowledge that can be used for both assessing how individual catchments are likely to respond to projected changes in precipitation and in informing data transfer to un-gauged catchments.Item Open Access Using variograms to detect and attribute hydrological change(European Geosciences Union (EGU) - Copernicus Publications, 2015-05-12) Chiverton, Andrew; Hannaford, Jamie; Holman, Ian P.; Corstanje, Ronald; Prudhomme, Christel; Hess, Tim M.; Bloomfield, J. P.There have been many published studies aiming to identify temporal changes in river flow time series, most of which use monotonic trend tests such as the Mann–Kendall test. Although robust to both the distribution of the data and incomplete records, these tests have important limitations and provide no information as to whether a change in variability mirrors a change in magnitude. This study develops a new method for detecting periods of change in a river flow time series, using temporally shifting variograms (TSVs) based on applying variograms to moving windows in a time series and comparing these to the long-term average variogram, which characterises the temporal dependence structure in the river flow time series. Variogram properties in each moving window can also be related to potential meteorological drivers. The method is applied to 91 UK catchments which were chosen to have minimal anthropogenic influences and good quality data between 1980 and 2012 inclusive. Each of the four variogram parameters (range, sill and two measures of semi-variance) characterise different aspects of the river flow regime, and have a different relationship with the precipitation characteristics. Three variogram parameters (the sill and the two measures of semi-variance) are related to variability (either day-to-day or over the time series) and have the largest correlations with indicators describing the magnitude and variability of precipitation. The fourth (the range) is dependent on the relationship between the river flow on successive days and is most correlated with the length of wet and dry periods. Two prominent periods of change were identified: 1995–2001 and 2004–2012. The first period of change is attributed to an increase in the magnitude of rainfall whilst the second period is attributed to an increase in variability of the rainfall. The study demonstrates that variograms have considerable potential for application in the detection and attribution of temporal variability and change in hydrological systems.Item Open Access Which catchment characteristics control the temporal dependence structure of daily river flows?(John Wiley & Sons, Ltd, 2014-12-31T00:00:00Z) Chiverton, Andrew; Hannaford, Jamie; Holman, Ian P.; Corstanje, Ronald; Prudhomme, Christel; Bloomfield, John; Hess, Tim M.Hydrological classification systems seek to provide information about the dominant processes in the catchment to enable information to be transferred between catchments. Currently, there is no widely agreed-upon system for classifying river catchments. This paper develops a novel approach to classifying catchments based on the temporal dependence structure of daily mean river flow time series, applied to 116 near-natural ‘benchmark' catchments in the UK. The classification system is validated using 49 independent catchments. Temporal dependence in river flow data is driven by the flow pathways, connectivity and storage within the catchment and can thus be used to assess the influence catchment characteristics have on moderating the precipitation-to-flow relationship. Semi-variograms were computed for the 116 benchmark catchments to provide a robust and efficient way of characterising temporal dependence. Cluster analysis was performed on the semi-variograms, resulting in four distinct clusters. The influence of a wide range of catchment characteristics on the semi-variogram shape was investigated, including: elevation, land cover, physiographic characteristics, soil type and geology. Geology, depth to gleyed layer in soils, slope of the catchment and the percentage of arable land were significantly different between the clusters. These characteristics drive the temporal dependence structure by influencing the rate at which water moves through the catchment and/or the storage in the catchment. Quadratic discriminant analysis was used to show that a model with five catchment characteristics is able to predict the temporal dependence structure for un-gauged catchments. This method could form the basis for future regionalisation strategies, as a way of transferring information on the precipitation-to-flow relationship between gauged and un-gauged catchments.