Browsing by Author "Piper, Jonathan"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Design of a tunable snapshot multispectral imaging system through ray tracing simulation(MDPI, 2019-01-05) Ding, Mengjia; Yuen, Peter W. T.; Piper, Jonathan; Godfree, Peter; Chatterjee, Ayan; Zahidi, Usman; Selvagumar, Senthurran; James, David; Richardson, Mark A.Research on snapshot multispectral imaging has been popular in the remote sensing community due to the high demands of video-rate remote sensing system for various applications. Existing snapshot multispectral imaging techniques are mainly of a fixed wavelength type, which limits their practical usefulness. This paper describes a tunable multispectral snapshot system by using a dual prism assembly as the dispersion element of the coded aperture snapshot spectral imagers (CASSI). Spectral tuning is achieved by adjusting the air gap displacement of the dual prism assembly. Typical spectral shifts of about 1 nm at 400 nm and 12 nm at 700 nm wavelength have been achieved in the present design when the air-gap of the dual prism is changed from 4.24 mm to 5.04 mm. The paper outlines the optical designs, the performance, and the pros and cons of the dual-prism CASSI (DP-CASSI) system. The performance of the system is illustrated by TraceProTM ray tracing, to allow researchers in the field to repeat or to validate the results presented in this paper.Item Open Access An end-to-end hyperspectral scene simulator with alternate adjacency effect models and its comparison with cameoSim(MDPI, 2019-12-24) Zahidi, Usman A.; Yuen, Peter W. T.; Piper, Jonathan; Godfree, Peter S.In this research, we developed a new rendering-based end to end Hyperspectral scene simulator CHIMES (Cranfield Hyperspectral Image Modelling and Evaluation System), which generates nadir images of passively illuminated 3-D outdoor scenes in Visible, Near Infrared (NIR) and Short-Wave Infrared (SWIR) regions, ranging from 360 nm to 2520 nm. MODTRAN TM (MODerate resolution TRANsmission), is used to generate the sky-dome environment map which includes sun and sky radiance along with the polarisation effect of the sky due to Rayleigh scattering. Moreover, we perform path tracing and implement ray interaction with medium and volumetric backscattering at rendering time to model the adjacency effect. We propose two variants of adjacency models, the first one incorporates a single spectral albedo as the averaged background of the scene, this model is called the Background One-Spectra Adjacency Effect Model (BOAEM), which is a CameoSim like model created for performance comparison. The second model calculates background albedo from a pixel’s neighbourhood, whose size depends on the air volume between sensor and target, and differential air density up to sensor altitude. Average background reflectance of all neighbourhood pixel is computed at rendering time for estimating the total upwelled scattered radiance, by volumetric scattering. This model is termed the Texture-Spectra Incorporated Adjacency Effect Model (TIAEM). Moreover, for estimating the underlying atmospheric condition MODTRAN is run with varying aerosol optical thickness and its total ground reflected radiance (TGRR) is compared with TGRR of known in-scene material. The Goodness of fit is evaluated in each iteration, and MODTRAN’s output with the best fit is selected. We perform a tri-modal validation of simulators on a real hyperspectral scene by varying atmospheric condition, terrain surface models and proposed variants of adjacency models. We compared results of our model with Lockheed Martin’s well-established scene simulator CameoSim and acquired Ground Truth (GT) by Hyspex cameras. In clear-sky conditions, both models of CHIMES and CameoSim are in close agreement, however, in searched overcast conditions CHIMES BOAEM is shown to perform better than CameoSim in terms of ℓ1 -norm error of the whole scene with respect to GT. TIAEM produces better radiance shape and covariance of background statistics with respect to Ground Truth (GT), which is key to good target detection performance. We also report that the results of CameoSim have a many-fold higher error for the same scene when the flat surface terrain is replaced with a Digital Elevation Model (DEM) based rugged one.Item Open Access Enhanced hyperspectral sharpening through improved relative spectral response characteristic (R-SRC) estimation for long-range surveillance applications(MDPI, 2024-05-29) Yuen, Peter W. T.; Piper, Jonathan; Yuen, Catherine; Cakir, MehmetThe fusion of low-spatial-resolution hyperspectral images (LRHSI) with high-spatial-resolution multispectral images (HRMSI) for super-resolution (SR), using coupled non-negative matrix factorization (CNMF), has been widely studied in the past few decades. However, the matching of spectral characteristics between the LRHSI and HRMSI, which is required before they are jointly factorized, has rarely been studied. One objective of this work is to study how the relative spectral response characteristics (R-SRC) of the LRHSI and HRMSI can be better estimated, particularly when the SRC of the latter is unknown. To this end, three variants of enhanced R-SRC algorithms were proposed, and their effectiveness was assessed by applying them for sharpening data using CNMF. The quality of the output was assessed using the L1-norm-error (L1NE) and receiver operating characteristics (ROC) of target detections performed using the adaptive coherent estimator (ACE) algorithm. Experimental results obtained from two subsets of a real scene revealed a two- to three-fold reduction in the reconstruction error when the scenes were sharpened by the proposed R-SRC algorithms, in comparison with Yokoya’s original algorithm. Experiments also revealed that a much higher proportion (by one order of magnitude) of small targets of 0.015 occupancy in the LRHSI scene could be detected by the proposed R-SRC methods compared with the baseline algorithm, for an equal false alarm rate. These results may suggest the possibility of SR to allow long-range surveillance using low-cost HSI hardware, particularly when the remaining issues of the occurrence of large reconstruction errors and comparatively higher false alarm rate for ‘rare’ species in the scene can be understood and resolved in future research.Item Open Access Signal to noise ratio of a coded slit hyperspectral sensor(MDPI, 2022-10-26) Piper, Jonathan; Yuen, Peter W. T.; James, DavidIn recent years, a wide range of hyperspectral imaging systems using coded apertures have been proposed. Many implement compressive sensing to achieve faster acquisition of a hyperspectral data cube, but it is also potentially beneficial to use coded aperture imaging in sensors that capture full-rank (non-compressive) measurements. In this paper we analyse the signal-to-noise ratio for such a sensor, which uses a Hadamard code pattern of slits instead of the single slit of a typical pushbroom imaging spectrometer. We show that the coded slit sensor may have performance advantages in situations where the dominant noise sources do not depend on the signal level; but that where Shot noise dominates a conventional single-slit sensor would be more effective. These results may also have implications for the utility of compressive sensing systems.Item Open Access Spatial spectral band selection for enhanced hyperspectral remote sensing classification applications(MDPI, 2020-08-31) Moya Torres, Ruben; Yuen, Peter W. T.; Yuan Changfeng; Piper, Jonathan; McCullough, Chris; Godfree PeterDespite the numerous band selection (BS) algorithms reported in the field, most if not all have exhibited maximal accuracy when more spectral bands are utilized for classification. This apparently disagrees with the theoretical model of the ‘curse of dimensionality’ phenomenon, without apparent explanations. If it were true, then BS would be deemed as an academic piece of research without real benefits to practical applications. This paper presents a spatial spectral mutual information (SSMI) BS scheme that utilizes a spatial feature extraction technique as a preprocessing step, followed by the clustering of the mutual information (MI) of spectral bands for enhancing the efficiency of the BS. Through the SSMI BS scheme, a sharp ’bell’-shaped accuracy-dimensionality characteristic that peaks at about 20 bands has been observed for the very first time. The performance of the proposed SSMI BS scheme has been validated through 6 hyperspectral imaging (HSI) datasets (Indian Pines, Botswana, Barrax, Pavia University, Salinas, and Kennedy Space Center (KSC)), and its classification accuracy is shown to be approximately 10% better than seven state-of-the-art BS schemes (Saliency, HyperBS, SLN, OCF, FDPC, ISSC, and Convolution Neural Network (CNN)). The present result confirms that the high efficiency of the BS scheme is essentially important to observe and validate the Hughes’ phenomenon in the analysis of HSI data. Experiments also show that the classification accuracy can be affected by as much as approximately 10% when a single ‘crucial’ band is included or missed out for classification.