Browsing by Author "Ono, Fumihisa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Pressure as a limiting factor for life(MD PI, 2016-08-17) Hazael, Rachael; Meersman, Filip; Ono, Fumihisa; McMillan, Paul F.Facts concerning the stability and functioning of key biomolecular components suggest that cellular life should no longer be viable above a few thousand atmospheres (200–300 MPa). However, organisms are seen to survive in the laboratory to much higher pressures, extending into the GPa or even tens of GPa ranges. This is causing main questions to be posed concerning the survival mechanisms of simple to complex organisms. Understanding the ultimate pressure survival of organisms is critical for food sterilization and agricultural products conservation technologies. On Earth the deep biosphere is limited in its extent by geothermal gradients but if life forms exist in cooler habitats elsewhere then survival to greater depths must be considered. The extent of pressure resistance and survival appears to vary greatly with the timescale of the exposure. For example, shock experiments on nanosecond timescales reveal greatly enhanced survival rates extending to higher pressure. Some organisms could survive bolide impacts thus allowing successful transport between planetary bodies. We summarize some of the main questions raised by recent results and their implications for the survival of life under extreme compression conditions and its possible extent in the laboratory and throughout the universe.Item Open Access Pressure tolerance of Artemia cysts compressed in water medium(Taylor and Francis, 2019-02-04) Hazael, Rachael; Matsuda, Shinsuke; Mori, Yoshihisa; Fitzmaurice, Brianna C.; Appleby-Thomas, Gareth J.; Painter, Jonathan; Meersman, Filip; Richaud, Myriam; Galas, Simon; Saini, Naurang L.; Ono, Fumihisa; McMillan, Paul F.The high pressure tolerance of cysts of Artemia salina was investigated up to several GPa in water. No survival was observed after exposure to 1.0 GPa for 15 min. After exposure to 2.0 GPa for the same time duration, the hatching rate had recovered to 33%, but decreased to 8% following compression at 7.5 GPa. This contrasts with results using Fluorinert™ as the pressure-transmitting medium where 80–88% recovery was observed. The lower survival rate in water is accompanied by swelling of the eggs, indicating that liquid H2O close to the ice-VI crystallization pressure penetrated inside the eggs. This pressure exceeds the stability limit for proteins and other key biomolecules components within the embryos that could not be resuscitated. Rehydration takes several minutes and so was not completed for all samples compressed to higher pressures, prior to ice-VI formation, resulting in renewed survival. However H2O penetration inside the shell resulted in increased mortalityItem Open Access Tolerance of Artemia to static and shock pressure loading(IOP Publishing, 2017-11-04) Fitzmaurice, Brianna C.; Appleby-Thomas, Gareth J.; Painter, Jonathan; Ono, Fumihisa; McMillan, Paul F.; Hazael, Rachael; Meersman, FilipHydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.