Browsing by Author "Oakey, John E."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
Item Open Access Annual performance analysis and optimization of a solar tower aided coal-fired power plant(Elsevier, 2019-01-10) Li, Chao; Zhai, Rongrong; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.; Turner, Peter J.The integration of solar energy into coal-fired power plants has been proven as a potential approach in the utilization of solar energy to reduce coal consumption. Moreover, solar augmentation offers low cost and low risk alternatives to stand-alone solar thermal power plants. In this study, the annual performance of a solar tower aided coal-fired power (STACP) system is investigated, and the influence of thermal storage system capacity on the annual solar generating power and annual solar-to-electricity efficiency is explored. The thermal storage system capacity is optimized to obtain the lowest levelized cost of electricity (LCOE). At the same time, the influence and sensitivity of several important economic factors are explored and assessed. Results demonstrate that compared to a coal-fired power system, the reduction in the annual average coal consumption rate of the STACP system with high direct normal irradiance (DNI), medium DNI, and low DNI are 5.79, 4.52, and 3.22 g/kWh, respectively. At a minimum, the annual coal consumption can be reduced by 14,000 t in a 600 MWe power generation unit. Because the same solar field is considered under different DNI conditions, the LCOE in the high DNI, medium DNI, and low DNI scenarios are all fairly similar (6.37, 6.40, and 6.41 ¢/kWh, respectively). When the solar multiple is 3.0, the optimal thermal storage capacity of the STACP system, with high, medium, and low DNIs are 6.73, 4.42, and 2.21 h, respectively. The sensitivity analysis shows that the change in economic parameters exerts more influence on the STACP system with the high DNI compared with the other two scenarios.Item Open Access Approaches to modelling fireside corrosion of superheater / reheater tubes in coal and biomass fired combustion power plants(ASM International, 2019-10-24) Simms, Nigel J.; Ekpe, Blessing; Riccio, Chiara; Mori, Stefano; Sumner, Joy; Oakey, John E.The combustion of coal and biomass fuels in power plants generates deposits on the surfaces of superheater / reheater tubes that can lead onto fireside corrosion. This type of materials degradation can limit the lives of such tubes in the long term, and better methods are needed to produce predictive models for such damage. This paper reports on four different approaches that are being investigated to tackle the challenge of modelling fireside corrosion damage on superheaters / reheaters: (a) CFD models to predict deposition onto tube surfaces; (b) generation of a database of available fireside corrosion data; (c) development of mechanistic and statistically based models of fireside corrosion from laboratory exposures and dimensional metrology; (d) statistical analysis of plant derived fireside corrosion datasets using multi-variable statistical techniques, such as Partial Least Squares Regression (PLSR). An improved understanding of the factors that influence fireside corrosion is resulting from the use of a combination of these different approaches to develop a suite of models for fireside corrosion damage.Item Open Access Design overview of high pressure dense phase CO2 pipeline transport in flow mode(Elsevier, 2013-08-05) Patchigolla, Kumar; Oakey, John E.In open literature, there is little information available with regards to the engineering and technological issues for material corrosion, in relation to high pressure supercritical CO2 pipeline transport from single point sources, such as the power industry. A typical CO2 pipeline is designed to operate at high pressure in the dense phase. However, it is evident that although there is considerable experience of testing materials in lower pressure gaseous CO2 in the oil and gas industry, there is little understanding of the behaviour of pipeline materials when in contact with impure CO2 captured either from power plants or the oil and gas industry. In this particular project development, a dynamic dense phase CO2 corrosion rig has been built (conditions: ∼85 bar, 40 °C and up to 5 l/min flow rate) in flow mode, to understand the effect of impurities (SO2, O2, H2, NO2 & CO) present in captured CO2 on the pipeline transport materials. This unique facility in the UK was developed via the MATTRANS project funded by the E.ON-EPSRC strategic partnership (EP/G061955/1). The test rig includes different metallic materials (X grade steel: X60, X70 and X100) to assess the corrosion of pipelines, and different geometry components (tubes, plates, charpy and tensile coupons), to assess ageing and decompression behavior of polymeric seals (Neoprene, fluorocarbon, ethylene and Buna N) under water-saturated dense phase CO2 with different impurity concentrations (0.05 mol % SO2; 4 mol % O2; 2 mol % H2; 0.05 mol % NO2; 1 mol % CO). The dynamic data generated from this dense phase CO2 corrosion rig will give vital information with regards to pipeline suitability and lifetimes, when operating with dense CO2.Item Open Access Design, process simulation and construction of a 100 kW pilot-scale CO2 membrane rig: Improving in situ CO2 capture using selective exhaust gas recirculation (S-EGR)(Elsevier, 2017-12-01) Darabkhani, Hamidreza Gohari; Jurado Pontes, Nelia; Prpich, George; Oakey, John E.; Wagland, Stuart T.; Anthony, Edward J.Carbon capture and storage (CCS) from natural gas-fired systems is an emerging field and many of the concepts and underlying scientific principles are still being developed. Preliminary studies suggest this approach can boost the CO2 content in the feed gas up to 3 times compared to the ‘no recycle’ case (CO2 concentration increased to 18% vs. 6%), with a consequent reduction in flow to the post-combustion capture unit by a factor of three compared to conventional, non-S-EGR. For this project, Cranfield University developed a pilot-scale 100 kW CO2 membrane rig facility in order to investigate simultaneously EGR and S-EGR technologies, the latter being achieved by using a CO2 sweep air polymeric membrane. A bench-scale membrane rig has also been developed to investigate the permeability and selectivity of different polymeric membranes to CO2. Currently a small-scale polydimethylsiloxane (PDMS) membrane module is also being investigated to study its selectivity/permeability. The tests include exploring the performance improvement of the PDMS membrane using different operating conditions with a view to developing scale-up procedures for the membrane unit for the actual 100 kW pilot-scale rig. Process simulations were performed using Aspen Plus software to predict the behaviour of the pilot-scale rig using a model developed based on empirical parameters (i.e., mass transfer coefficient of CO2 through the membrane and permeance), measured in the bench-scale membrane test unit. The results show that CO2 concentrations of up to 14.9% (comparable to CO2 level in coal combustion) can be achieved with 60% EGR, with a 90% CO2 removal efficiency of the membrane units. However, the results generated with the membrane model in which specific permeance values to PDMS were applied, predicted concentrations of CO2 in flue gases up to 9.8% (v/v) for a selective recycle of 60%. The study shows that the S-EGR technique is an effective method that can provide similar conditions to that of a coal-fired power plant for the post-combustion capture system operating on natural gas-fired units, but also highlights the fact that more research is required to find more suitable materials for membranes that optimise the CO2 removal efficiencies from the flue gas.Item Open Access Engineering scale-up challenges, and effects of SO2 on the calcium looping cycle for post combustion CO2 capture(Elsevier, 2014-12-31) Cotton, Alissa; Patchigolla, Kumar; Oakey, John E.Engineering scale-up challenges, and potential effects of SO2 on the calcium looping cycle for post combustion CO2 capture have been investigated in Cranfield University's pilot scale reactor (25 kWth). Following reactor and process modifications, close to 80% capture was achieved. SO2 was found to have a detrimental effect on the calcium looping cycle in both batch and continuous cyclic tests, although the presence of steam from natural gas-fired burners was found to have a positive effect on maintaining capture capacity of the sorbent.Item Open Access Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation(Elsevier, 2015-11-18) Haider, Syed Kumail; Azimi, G.; Duan, Lunbo; Anthony, Edward J.; Patchigolla, Kumar; Oakey, John E.; Leion, H.; Mattisson, T.; Lyngfelt, A.The use of naturally occurring ores as oxygen carriers in CLC processes is attractive because of their relative abundance and low cost. Unfortunately, they typically exhibit lower reactivity and lack the mechanical robustness required, when compared to synthetically produced carriers. Impregnation is a suitable method for enhancing both the reactivity and durability of natural ores when used as oxygen carriers for CLC systems. This investigation uses impregnation to improve the chemical and mechanical properties of a Brazilian manganese ore and a Canadian iron ore. The manganese ore was impregnated with Fe2O3 and the iron ore was impregnated with Mn2O3 with the goal of forming a combined Fe/Mn oxygen carrier. The impregnated ore’s physical characteristics were assessed by SEM, BET and XRD analysis. Measurements of the attrition resistance and crushing strength were used to investigate the mechanical robustness of the oxygen carriers. The impregnated ore’s mechanical and physical properties were clearly enhanced by the impregnation method, with boosts in crushing strength of 11–26% and attrition resistance of 37–31% for the impregnated iron and manganese ores, respectively. Both the unmodified and impregnated ore’s reactivity, for the conversion of gaseous fuel (CH4 and syngas) and gaseous oxygen release (CLOU potential) were investigated using a bench-scale quartz fluidised-bed reactor. The impregnated iron ore exhibited a greater degree of syngas conversion compared to the other samples examined. Iron ore based oxygen carrier’s syngas conversion increases with the number of oxidation and reduction cycles performed. The impregnated iron ore exhibited gaseous oxygen release over extended periods in an inert atmosphere and remained at a constant 0.2% O2 concentration by volume at the end of this inert period. This oxygen release would help ensure the efficient use of solid fuels. The impregnated iron ore’s reactivity for CH4 conversion was similar to the reactivity of its unmodified counterpart. The unmodified manganese ore converted CH4 to the greatest extent of all the samples tested here, while the impregnated manganese ore exhibited a decrease in reactivity with respect to syngas and CH4 conversion.Item Open Access Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste(2011-02-01T00:00:00Z) Laryea-Goldsmith, Rene; Oakey, John E.; Simms, Nigel J.Background: Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e. g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results: Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions: Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants.Item Open Access Minor and Trace Element Emissions from Post-Combustion CO2 Capture from Coal: Experimental and Equilibrium Calculations(Elsevier Science B.V., Amsterdam., 2014-01-30T00:00:00Z) Cotton, Alissa; Patchigolla, Kumar; Oakey, John E.Elemental partitioning, including gaseous elemental emissions from pilot scale (25 kWth), post combustion CO2 capture using a Ca-based sorbent, have been investigated for naturally occurring elemental impurities found in limestone, that have the potential to be released to the environment under carbonation and calcination conditions. Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analysis of Longcliffe SP52 limestone was undertaken to identify other impurities present, and the effect of sorbent mass and SO2 concentration on elemental partitioning in the carbonator between solid sorbent and gaseous phase was investigated, using a bubbler sampling system. Samples were analysed using ICP-MS, which showed that sorbent mass and SO2 concentration in the carbonator effected the concentrations of gaseous trace elements sampled. Thermodynamic modelling of the carbonation and calcination process was also undertaken, based on molar quantities of trace elements identified from ICP-MS analysis of limestone, which provided useful information with regards to element stability and partitioning under realistic CO2 capture conditions.Item Open Access Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage(Elsevier, 2018-08-25) Li, Chao; Yang, Zhiping; Zhai, Rongrong; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.Solar aided coal-fired power system has been proven to be a promising way to utilise solar energy in large scale. In this paper, the performances of the solar tower aided coal-fired power (STACP) system at 100% load, 75% load, and 50% load for different days are investigated and the maximum solar power that the boiler can absorb under different plant loads are explored. Then, the effects of solar multiple (SM) and the thermal energy storage (TES) hour on the daily performance of STACP system are investigated. Results show that the maximum solar power that a 600 MWe boiler can absorb at 100% load, 75% load and 50% load are 76.4 MWth, 54.2 MWth and 23.0 MWth, respectively. Due to the augmented energy from the solar field, the maximum standard coal consumption rate is reduced by 13.53 g/kWh, 12.81 g/kWh and 8.22 g/kWh at 100% load, 75% load and 50% load, respectively. With an increase of solar power input, the boiler efficiency, overall system efficiency and solar thermal-to-electricity efficiency show a downward trend. In addition, the daily coal consumption of summer solstice is the lowest while the winter solstice is the highest for a particular SM and TES hour.Item Open Access Pressurised calcination-atmospheric carbonation of limestone for cyclic CO2 capture from flue gases(Elsevier, 2015-06-19) Kavosh, Masoud; Patchigolla, Kumar; Oakey, John E.; Anthony, Edward J.; Champagne, Scott; Hughes, RobinA study was carried out to investigate the CO2 capture performance of limestone under atmospheric carbonations following pressurised calcination. A series of tests was carried out to study the role of pressurised calcination using a fluidised bed reactor. In this investigation, calcination of limestone particles was carried out at three levels of pressure: 0.1 MPa, 0.5 MPa, and 1.0 MPa. After calcination, the capture performance of the calcined sorbent was tested at atmospheric pressure. As expected, the results indicate that the carbonation conversion of calcined sorbent decreases as the pressure is increased during calcination. Pressurised calcination requires higher temperatures and causes an increase in sorbent sintering, albeit that it would have the advantage of reducing equipment size as well as the compression energy necessary for CO2transport and storage, and an analysis has been provided to give an assessment of the potential benefits associated with such an option using process software.Item Open Access Thermal performance of different integration schemes for a solar tower aided coal-fired power system(Elsevier, 2018-06-23) Li, Chao; Zhai, Rongrong; Yang, Yongping; Patchigolla, Kumar; Oakey, John E.A Solar Tower Aided Coal-fired Power (STACP) system utilizes a solar tower coupled to a conventional coal-fired power system to reduce pollutants, greenhouse gas emissions and the investment of solar energy facilities. This paper examines three different schemes for integrating solar energy into a conventional boiler. For each scheme, an energy and exergy analysis of a 600 MWe supercritical coal-fired power system is combined with 53 MWth of solar energy in both a fuel saving mode and a power boosting mode. The results show that, for all these integration schemes, the boiler’s efficiency and system’s efficiency are reduced. However, the standard coal consumption rate is lower in comparison to conventional power plants and the standard coal consumption rate in the fuel saving mode is lower than that in the power boosting mode for all three schemes. Comprehensively considering both the standard coal consumption rate and efficiency, the scheme that uses solar energy to heat superheat steam and subcooled feed-water is the best integration option. Compared with a coal-fired only system, the saved standard coal consumption rate of the above mentioned scheme in fuel saving mode and power boosting mode can reach up to 11.15 g/kWh and 11.11 g/kWh, respectively. Exergy analysis shows, for STACP system, exergy losses of boiler and solar field contribute over 88% of whole system’s exergy loss.