CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nongdren, Lourembam"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparative life cycle assessment of glycerol valorization routes to 1,2- and 1,3-propanediol based on process modeling
    (American Chemical Society , 2024-10-07) Vanapalli, Kumar Raja; Nongdren, Lourembam; Maity, Sunil K.; Kumar, Vinod
    Crude glycerol, a high-volume byproduct of the biodiesel industry, has seen a significant surplus due to the industry’s rapid growth. It can be a promising feedstock for a range of high-value products via chemical and biochemical routes. This study thus elucidates the relative environmental performance of two prominent glycerol valorization technologies, i.e., catalytic hydrogenolysis to 1,2-propanediol and microbial fermentation (batch and fed-batch) to 1,3-propanediol, using a cradle-to-gate life cycle assessment (LCA). The LCA was performed using an experimental data-driven comprehensive process model to represent an industrial-scale biorefinery, handling 20 833 kg/h of glycerol. The LCA results identified cooling water (18-35.5%) and steam (15.2-33.7%) consumption in the distillation and glycerol sourcing (33.3-68.1%) as the critical environmental hotspots, which should be focused on while designing the process. The fed-batch fermentation process was environmentally more benign, with significantly lower environmental impacts than hydrogenolysis (by 35.2%) and batch fermentation (by 48.2%). Integrating effective process heat recovery using pinch technology reduced the overall environmental impacts by 4.9-11.2%. The environmental performance of the overall processes varied substantially (2.4-62.1%) with changes in glycerol sourcing and production methods. Therefore, energy and material recycling with sustainable water and glycerol sourcing can improve the sustainability of the overall process.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback