CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Nascimento, Carla Danielle Vasconcelos do"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Durability indicatives of hydrogel for agricultural and forestry use in saline conditions
    (Elsevier, 2021-09-06) Nascimento, Carla Danielle Vasconcelos do; Andrade Feitosa, Judith Pessoa de; Simmons, Robert; Dias, Carlos Tadeu dos Santos; Nascimento, Ícaro Vasconcelos do; Mota, Jaedson Cláudio Anunciato; Costa, Mirian Cristina Gomes
    This research tested the hypothesis that the interaction between time and salinity reduces the water absorption potential of a hydrogel – Poly (Acrylamide-co-Potassium Acrylate) and influence the degradation of residual acrylamide monomer. The experimental design was completely randomized split-plot with four replications. The treatments were time periods (30, 60, 90 and 120 days) and levels of salinity of the hydrating solution (distilled water = 0.003, 0.5; 1.5; 3.0 and 6.0 dS m−1). Swelling, hydrogel composition, and residual acrylamide monomer concentration were evaluated. The hydrogel showed lowest water absorption potential (8.1 g g−1) in a saline solution of 4.20 dS m−1 after 120 days. The C/N ratio of the hydrogel increased by up to 47% in a hydrating solution with an EC of 4.4 dS m−1 at 120 days. Additionally, there was an observed shift in the wavelength of methylene, amide, and acrylate bands, that indicates degradation. Residual acrylamide monomer concentration was <0.5 mg g−1 (safe for agricultural use). After 120 days up to 85% of the residual acrylamide monomer was degraded. About the water absorption potential, the results suggest that under semi-arid conditions hydrogel durability for forestry and crops applications may be impaired by the salinity of the hydrating solution.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback