Browsing by Author "Nasar, Nasreen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Enzymes targeting distinct hydrolysis blind-spots of thermal and biological pre-treatments significantly uplift biogas production(Elsevier, 2025-06) Nasar, Nasreen; Pizzagalli, Giulia; Coulon, Frederic; Bajón Fernández, YadiraThermal hydrolysis process (THP) and biological hydrolysis (BH) are key pre-treatment technologies for anaerobic digestion (AD), termed advanced anaerobic digesters (AADs). They target the rate-limiting hydrolysis step in AD. This study evaluates full-scale pre-treatments for macromolecule bias and the implementation of hydrolysis enzymes to enhance biogas yield. Findings show THP significantly improves protein and carbohydrate solubilisation by 30% and 25%, respectively, but fully hydrolyses only carbohydrates. In contrast, BH targets fibres and proteins, achieving 35% and 23% solubilisation, and only partially hydrolyses carbohydrates. Biomethane potential (BMP) tests indicate that protease enzymes raise biomethane yield by 20-30% for AAD with THP pre-treatment. In comparison, α-amylase increases it by over 30% for AAD with BH pre-treatment. This study tailors enzyme selection and dosage to specifically address the unique "hydrolysis blind spot" of each pre-treatment, providing a strategic framework to enhance AD technologies by an improved understanding of macromolecule selectivity and their transformation pathways.Item Open Access Exploring nanobubble technology for enhanced anaerobic digestion of thermal-hydrolysis pre-treated sewage sludge(Elsevier, 2024-09-01) Lyu, Tao; Wu, Fei; Nasar, Nasreen; Li, Xin; Jarvis, Peter; Bajón Fernández, YadiraNanobubble technology was used to enhance anaerobic digestion (AD) of thermal-hydrolysis pre-treated sewage sludge for bioenergy recovery. The prepared air, CO2, and H2 nanobubble solutions, with concentrations of 9.88–10.2 × 107 bubbles/mL, remained stable for at least 7 days. After adding them into AD reactors, significantly higher CH4 production (37.1 %) was observed for the CO2 nanobubble treatment, followed by air (25.6 %) and H2 (14.5 %) nanobubble treatments, compared to the control group. CO2 nanobubble treatment performed the best in improving acidogenesis/acetogenesis, resulting in significantly higher volatile fatty acid generation during the initial 3–4 days. A comparison of reactors supersaturated and non-saturated with oxygen has demonstrated most of the biogas uplift observed to result from the nanobubbles rather than from initial oxygen soluble levels, demonstrating the crucial role of nanobubbles in upgrading AD. This study demonstrates, for the first time, that nanobubbles can provide additional benefits when combined with stablished sludge pre-treatment technologies.