CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Millett, Jeremy C. F."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deviatoric response of an armour-grade aluminium alloy
    (AIP American Institute of Physics, 2009-12-31T00:00:00Z) Appleby-Thomas, Gareth J.; Hazell, Paul J.; Millett, Jeremy C. F.; Bourne, Neil K.
    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The effects of changing chemistry on the shock response of basic polymers
    (Springer, 2016-07-11) Millett, Jeremy C. F.; Brown, Eric N.; Gray III, George T.; Bourne, Neil K.; Wood, David C.; Appleby-Thomas, Gareth J.
    The shock response of four common semicrystalline thermoplastic polymers—polyethylene (PE), polyvinylchloride (PVC), polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE)—have been studied in terms of their Hugoniots, release velocities and shear strengths. Through the variations in behaviour caused by changes to the attached atoms to the carbon backbone, it has been possible to suggest that there are two main factors in play. The first is an electrostatic repulsion between adjacent polymer chains. Where this force is large, for example in PTFE with highly electronegative fluorine atoms, this results in this force dominating the shock response, with low shock velocities, high release velocities and little if no hardening behind the shock front. In contrast, in materials such as PE, this force is now weaker, due to the lower electronegativity of hydrogen, and hence this force is easier to overcome by the applied shock stress. Now the main factor affecting shock behaviour is controlled by the shape of the polymer chain allowing inter chain tangling (tacticity). This results in higher shock velocities, lower release speeds and significant hardening behind the shock front as the chains are forced together. This is prevalent in materials with a relatively open structure such as PE and is enhanced with the presence of large side groups or atoms off the main polymer chain.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The mechanical and optical response of Polychlorotrifluoroethylene to one-dimensional shock loading
    (Springer, 2015-07-24) Millett, Jeremy C. F.; Lowe, Michael R.; Appleby-Thomas, Gareth J.; Roberts, Andrew
    A series of plate impact experiments have been performed to probe the shock behavior of polychlorotrifluoroethylene (PCTFE), in terms of its optical and mechanical response. Interfacial velocity measurements using interferometric techniques have shown differences between measured and actual velocities, and been used to determine changes in refractive index due to shock-induced density increases. These have further been used to determine an optical correction factor, and allow the possibility of PCTFE being used as an optical window in future shock loading experiments. The shear strength of shock loaded PCTFE has also been shown to be near-constant behind the shock front, in common with other fluorinated polymers, although the strength variation with impact stress is greater than other similar materials. It has been suggested that the presence of a larger chlorine atom replacing a fluorine allows for a degree of tacticity between polymer chains, with local variations of charge density along the chain (due to the presence of the chlorine atom) also having an effect.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The shock Hugoniot of hydroxy-terminated polybutadiene
    (AIP, 2004-08-04) Meziere, Y.; Akhavan, Jacqueline; Stevens, G. S.; Millett, Jeremy C. F.; Bourne, Neil K.
    The response of polymers to shock loading is becoming of increasing importance, both as binder systems in plastic-bonded explosives (PBXs) and as structural materials in their own right. In this paper, we report on the shock Hugoniot of hydroxy-terminated polybutadiene (HTPB), which is commonly used as a binder system in PBXs, but whose shock response has yet to be presented in the open literature. Results indicate that the shock velocity --- particle velocity relationship is linear, similar to some but not all polymer-based materials.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The Strength of two HMX based plastic bonded explosives during one dimensional shock loading
    (Springer, 2017-03) Millett, Jeremy C. F.; Taylor, P.; Roberts, Andrew; Appleby-Thomas, Gareth J.
    A series of experiments have been performed to probe the mechanical response of two HMX based plastic bonded explosives to one dimensional shock loading. Manganin stress gauges in longitudinal and lateral orientation to the loading axis have been used as the diagnostic. Results indicate that despite major differences in the binder phase and smaller differences in the HMX crystal loading and morphology, the Hugoniot and shear strengths behind the shock front are near identical. We have proposed that this is due to the HMX crystals forming a network that supports the bulk of the applied stress.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback