Browsing by Author "Miguez, Manuel Esperon"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access A review of model based and data driven methods targeting hardware systems diagnostics(PTDT, 2018-11-22) Skliros, Christos; Miguez, Manuel Esperon; Fakhre, Ali; Jennions, IanSystem health diagnosis serves as an underpinning enabler for enhanced safety and optimized maintenance tasks in complex assets. In the past four decades, a wide-range of diagnostic methods have been proposed, focusing either on system or component level. Currently, one of the most quickly emerging concepts within the diagnostic community is system level diagnostics. This approach targets in accurately detecting faults and suggesting to the maintainers a component to be replaced in order to restore the system to a healthy state. System level diagnostics is of great value to complex systems whose downtime due to faults is expensive. This paper aims to provide a comprehensive review of the most recent diagnostics approaches applied to hardware systems. The main objective of this paper is to introduce the concept of system level diagnostics and review and evaluate the collated approaches. In order to achieve this, a comprehensive review of the most recent diagnostic methods implemented for hardware systems or components is conducted, highlighting merits and shortfalls.Item Open Access Simulation of an aircraft environmental control system(Elsevier, 2020-01-09) Jennions, Ian; Ali, Fakhre; Miguez, Manuel Esperon; Escobar, Ignacio CamachoThe environmental control system of a civil aircraft is a major driver of maintenance. Legacy systems, such as those on the Boeing 737, are particularly at risk, as they are not instrumented for health management. These systems degrade in operation and allow compensation within their operation for degrading components, until severe degradation or failure results. The required maintenance is then both costly and disruptive. The goal of this research is to produce a simulation environment that can model the aircraft environmental control system, in order that analysis for sensor placement and algorithms can be performed without extensive, and expensive, testing. A simulation framework called Simscape Environmental Control System Simulation under All Conditions has been proposed and implemented. It offers a library of components that can be assembled into specific aircraft environmental control system simulation configurations. It is capable of simulating the health state indicating parameters at sub-system and component levels under a wide-range of aircraft operating scenarios. The developed framework has been successfully implemented to simulate a Boeing 737-800 passenger air conditioner. Its verification and validation has been carried out against the actual data corresponding to a Boeing 737-800 passenger air conditioner operating at two different cruise operating points. An extensive comparison of the simulation is presented against the data for all the passenger air conditioner components. The overall acquired results suggest that changes in the aircraft ambient conditions can have a noticeable impact on the demanded passenger air conditioner outlet temperature, and a substantial impact on the heat transfer in the primary and secondary heat exchangers. The reported simulation capability serves as a first step towards formulating an environmental control system fault simulation and diagnostic solution.