Browsing by Author "McKew, Boyd A."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Bacterial community legacy effects following the Agia Zoni II oil-spill, Greece(Frontiers Media, 2020-07-17) Thomas, Gareth E.; Cameron, Tom C.; Campo, Pablo; Clark, Dave R.; Coulon, Frederic; Gregson, Benjamin H.; Hepburn, Leanne J.; McGenity, Terry J.; Miliou, Anastasia; Whitby, Corinne; McKew, Boyd A.In September 2017 the Agia Zoni II sank in the Saronic Gulf, Greece, releasing approximately 500 tonnes of heavy fuel oil, contaminating the Salamina and Athens coastlines. Effects of the spill, and remediation efforts, on sediment microbial communities were quantified over the following 7 months. Five days post-spill, the concentration of measured hydrocarbons within surface sediments of contaminated beaches was 1,093–3,773 μg g–1 dry sediment (91% alkanes and 9% polycyclic aromatic hydrocarbons), but measured hydrocarbons decreased rapidly after extensive clean-up operations. Bacterial genera known to contain oil-degrading species increased in abundance, including Alcanivorax, Cycloclasticus, Oleibacter, Oleiphilus, and Thalassolituus, and the species Marinobacter hydrocarbonoclasticus from approximately 0.02 to >32% (collectively) of the total bacterial community. Abundance of genera with known hydrocarbon-degraders then decreased 1 month after clean-up. However, a legacy effect was observed within the bacterial community, whereby Alcanivorax and Cycloclasticus persisted for several months after the oil spill in formerly contaminated sites. This study is the first to evaluate the effect of the Agia Zoni II oil-spill on microbial communities in an oligotrophic sea, where in situ oil-spill studies are rare. The results aid the advancement of post-spill monitoring models, which can predict the capability of environments to naturally attenuate oilItem Open Access Effects of dispersants and biosurfactants on crude-oil biodegradation and bacterial community succession(MDPI, 2021-06-01) Thomas, Gareth E.; Brant, Jan L.; Campo, Pablo; Clark, Dave R.; Coulon, Frederic; Gregson, Benjamin H.; McGenity, Terry J.; McKew, Boyd A.This study evaluated the effects of three commercial dispersants (Finasol OSR 52, Slickgone NS, Superdispersant 25) and three biosurfactants (rhamnolipid, trehalolipid, sophorolipid) in crude-oil seawater microcosms. We analysed the crucial early bacterial response (1 and 3 days). In contrast, most analyses miss this key period and instead focus on later time points after oil and dispersant addition. By focusing on the early stage, we show that dispersants and biosurfactants, which reduce the interfacial surface tension of oil and water, significantly increase the abundance of hydrocarbon-degrading bacteria, and the rate of hydrocarbon biodegradation, within 24 h. A succession of obligate hydrocarbonoclastic bacteria (OHCB), driven by metabolite niche partitioning, is demonstrated. Importantly, this succession has revealed how the OHCB Oleispira, hitherto considered to be a psychrophile, can dominate in the early stages of oil-spill response (1 and 3 days), outcompeting all other OHCB, at the relatively high temperature of 16 °C. Additionally, we demonstrate how some dispersants or biosurfactants can select for specific bacterial genera, especially the biosurfactant rhamnolipid, which appears to provide an advantageous compatibility with Pseudomonas, a genus in which some species synthesize rhamnolipid in the presence of hydrocarbons.Item Open Access Nitrogen oxidation consortia dynamics influence the performance of full-scale rotating biological contactors(Elsevier, 2019-12-19) Freeman, D.; Bajón Fernández, Yadira; Wilson, Andrea; McKew, Boyd A.; Whitby, Corinne; Clark, Dave R.; Jefferson, Bruce; Coulon, Frederic; Hassard, FrancisAmmonia oxidising microorganisms (AOM) play an important role in ammonia removal in wastewater treatment works (WWTW) including rotating biological contactors (RBCs). Environmental factors within RBCs are known to impact the performance of key AOM, such that only some operational RBCs have shown ability for elevated ammonia removal. In this work, long-term treatment performance of seven full-scale RBC systems along with the structure and abundance of the ammonia oxidising bacteria (AOB) and archaea (AOA) communities within microbial biofilms were examined. Long term data showed the dominance of AOB in most RBCs, although two RBCs had demonstrable shift toward an AOA dominated AOM community. Next Generation Sequencing of the 16S rRNA gene revealed diverse evolutionary ancestry of AOB from RBC biofilms while nitrite-oxidising bacteria (NOBs) were similar to reference databases. AOA were more abundant in the biofilms subject to lower organic loading and higher oxygen concentration found at the distal end of RBC systems. Modelling revealed a distinct nitrogen cycling community present within high performing RBCs, linked to efficient control of RBC process variables (retention time, organic loading and oxygen concentration). We present a novel template for enhancing the resilience of RBC systems through microbial community analysis which can guide future strategies for more effective ammonia removal. To best of the author’s knowledge, this is the first comparative study reporting the use of next generation sequencing data on microbial biofilms from RBCs to inform effluent quality of small WWTW.