Browsing by Author "Martin, R. M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Classification of fracture and non-fracture groups by analysis of coherent X-ray scatter(Nature Publishing Group, 2016-07-01) Dicken, A. J.; Evans, J. Paul O.; Rogers, Keith; Stone, N.; Greenwood, Charlene; Godber, S. X.; Clement, J. G.; Lyburn, Iain Douglas; Martin, R. M.; Zioupos, PeterOsteoporotic fractures present a significant social and economic burden, which is set to rise commensurately with the aging population. Greater understanding of the physicochemical differences between osteoporotic and normal conditions will facilitate the development of diagnostic technologies with increased performance and treatments with increased efficacy. Using coherent X-ray scattering we have evaluated a population of 108 ex vivo human bone samples comprised of non-fracture and fracture groups. Principal component fed linear discriminant analysis was used to develop a classification model to discern each condition resulting in a sensitivity and specificity of 93% and 91%, respectively. Evaluating the coherent X-ray scatter differences from each condition supports the hypothesis that a causal physicochemical change has occurred in the fracture group. This work is a critical step along the path towards developing an in vivo diagnostic tool for fracture risk prediction.Item Open Access Fracture toughness of the cancellous bone of FNF femoral heads in relation to its microarchitecture(European Society of Biomechanics, 2016-07) Greenwood, Charlene; Clements, J. G.; Dicken, A. J.; Evans, J. Paul O.; Lyburn, Iain Douglas; Martin, R. M.; Rogers, Keith; Stone, N.; Adams, G.; Zioupos, PeterThis study considers the relationship between microarchitecture and mechanical properties for cancellous bone specimens collected from a cohort of patients who had suffered fractured necks of femur. OP is an acute skeletal condition with huge socioeconomic impact [1] and it is associated with changes in both bone quantity and quality [2], which affect greatly the strength and toughness of the tissue [3].Item Open Access The micro-architecture of human cancellous bone from fracture neck of femur patients in relation to the structural integrity and fracture toughness of the tissue(Elsevier, 2015-10-05) Greenwood, Charlene; Clement, J. G.; Dicken, A. J.; Evand, J. P. O.; Lyburn, Iain Douglas; Martin, R. M.; Rogers, Keith; Stone, N.; Adams, G.; Zioupos, PeterOsteoporosis is clinically assessed from bone mineral density measurements using dual energy X-ray absorption (DXA). However, these measurements do not always provide an accurate fracture prediction, arguably because DXA does not grapple with ‘bone quality’, which is a combined result of microarchitecture, texture, bone tissue properties, past loading history, material chemistry and bone physiology in reaction to disease. Studies addressing bone quality are comparatively few if one considers the potential importance of this factor. They suffer due to low number of human osteoporotic specimens, use of animal proxies and/or the lack of differentiation between confounding parameters such as gender and state of diseased bone. The present study considers bone samples donated from patients (n = 37) who suffered a femoral neck fracture and in this very well defined cohort we have produced in previous work fracture toughness measurements (FT) which quantify its ability to resist crack growth which reflects directly the structural integrity of the cancellous bone tissue. We investigated correlations between BV/TV and other microarchitectural parameters; we examined effects that may suggest differences in bone remodelling between males and females and compared the relationships with the FT properties. The data crucially has shown that TbTh, TbSp, SMI and TbN may provide a proxy or surrogate for BV/TV. Correlations between FT critical stress intensity values and microarchitecture parameters (BV/TV, BS/TV, TbN, BS/BV and SMI) for osteoporotic cancellous tissue were observed and are for the first time reported in this study. Overall, this study has not only highlighted that the fracture model based upon BMD could potentially be improved with inclusion of other microarchitecture parameters, but has also given us clear clues as to which of them are more influential in this role.