CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Marchant, G."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of stress state and simultaneous hot corrosion on the crack propagation and fatigue life of single crystal superalloy CMSX-4
    (Elsevier, 2018-05-03) Brooking, Laurie; Gray, Simon; Sumner, Joy; Nicholls, John R.; Marchant, G.; Simms, Nigel J.
    Operating conditions within industrial gas turbines are changing in response to pressures to reduce environmental impact and enable use of renewable sources. This is driving an increase in the operational temperatures and pressures of combustion in turbine systems. Additionally, diverse operating environments can result in higher sulphur and trace metal contaminant levels, exacerbating hot corrosion in GT systems. Low cycle fatigue (LCF) cycling can also be intensified as a result of increased start/stop shutdowns. The combined effects of hot corrosion and stress are experimentally studied on CMSX-4 single crystal (SC) γ/γ' system under both fatigue and static stress conditions, with either a multi-axial bending or uniaxial stress state. The associated stress intensity thresholds (KTH) under the various stress conditions were evaluated using finite element analysis (FEA). Cracking was observed both under static and fatigue stress conditions in a hot corrosion environment. Crack morphologies were analysed using SEM techniques. Bending stresses and fatigue cycles demonstrated increased crack propagation in the presence of hot corrosion with static uniaxial stresses showing the longest nucleation times and lowest propagation rates.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback