CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Manes, Costantino"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Dynamics of bubbles under stochastic pressure forcing
    (American Physical Society, 2021-02-23) Vesipa, Riccardo; Paissoni, Eleonora; Manes, Costantino; Ridolfi, Luca
    Several studies have investigated the dynamics of a single spherical bubble at rest under a nonstationary pressure forcing. However, attention has almost always been focused on periodic pressure oscillations, neglecting the case of stochastic forcing. This fact is quite surprising, as random pressure fluctuations are widespread in many applications involving bubbles (e.g., hydrodynamic cavitation in turbulent flows or bubble dynamics in acoustic cavitation), and noise, in general, is known to induce a variety of counterintuitive phenomena in nonlinear dynamical systems such as bubble oscillators. To shed light on this unexplored topic, here we study bubble dynamics as described by the Keller-Miksis equation, under a pressure forcing described by a Gaussian colored noise modeled as an Ornstein-Uhlenbeck process. Results indicate that, depending on noise intensity, bubbles display two peculiar behaviors: when intensity is low, the fluctuating pressure forcing mainly excites the free oscillations of the bubble, and the bubble's radius undergoes small amplitude oscillations with a rather regular periodicity. Differently, high noise intensity induces chaotic bubble dynamics, whereby nonlinear effects are exacerbated and the bubble behaves as an amplifier of the external random forcing

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback