CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Maity, Sunil K."

Now showing 1 - 15 of 15
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Bread waste valorization: a review of sustainability aspects and challenges
    (Frontiers, 2024-02-05) Hafyan, Rendra Hakim; Mohanarajan, Jasmithaa; Uppal, Manaal; Kumar, Vinod; Narisetty, Vivek; Maity, Sunil K.; Sadhukhan, Jhuma; Gadkari, Siddharth
    Bread waste (BW) poses a significant environmental and economic challenge in the United Kingdom (UK), where an estimated 20 million slices of bread are wasted daily. BW contains polysaccharides with great potential for its valorization into building block chemicals. While BW valorization holds tremendous promise, it is an emerging field with low technology readiness levels (TRLs), necessitating careful consideration of sustainability and commercial-scale utilization. This review offers a comprehensive assessment of the sustainability aspects of BW valorization, encompassing economic, environmental, and social factors. The primary objective of this review article is to enhance our understanding of the potential benefits and challenges associated with this approach. Incorporating circular bioeconomy principles into BW valorization is crucial for addressing global issues stemming from food waste and environmental degradation. The review investigates the role of BW-based biorefineries in promoting the circular bioeconomy concept. This study concludes by discussing the challenges and opportunities of BW valorization and waste reduction, along with proposing potential strategies to tackle these challenges.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparative life cycle assessment of glycerol valorization routes to 1,2- and 1,3-propanediol based on process modeling
    (American Chemical Society , 2024-10-07) Vanapalli, Kumar Raja; Nongdren, Lourembam; Maity, Sunil K.; Kumar, Vinod
    Crude glycerol, a high-volume byproduct of the biodiesel industry, has seen a significant surplus due to the industry’s rapid growth. It can be a promising feedstock for a range of high-value products via chemical and biochemical routes. This study thus elucidates the relative environmental performance of two prominent glycerol valorization technologies, i.e., catalytic hydrogenolysis to 1,2-propanediol and microbial fermentation (batch and fed-batch) to 1,3-propanediol, using a cradle-to-gate life cycle assessment (LCA). The LCA was performed using an experimental data-driven comprehensive process model to represent an industrial-scale biorefinery, handling 20 833 kg/h of glycerol. The LCA results identified cooling water (18-35.5%) and steam (15.2-33.7%) consumption in the distillation and glycerol sourcing (33.3-68.1%) as the critical environmental hotspots, which should be focused on while designing the process. The fed-batch fermentation process was environmentally more benign, with significantly lower environmental impacts than hydrogenolysis (by 35.2%) and batch fermentation (by 48.2%). Integrating effective process heat recovery using pinch technology reduced the overall environmental impacts by 4.9-11.2%. The environmental performance of the overall processes varied substantially (2.4-62.1%) with changes in glycerol sourcing and production methods. Therefore, energy and material recycling with sustainable water and glycerol sourcing can improve the sustainability of the overall process.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A comparative techno-economic feasibility of hydrogen production from sugarcane bagasse and bread waste
    (Elsevier, 2025-05-15) Hafyan, Rendra Hakim; Sadhukhan, Jhuma; Kumar, Vinod; Maity, Sunil K.; Gadkari, Siddharth
    An increase in the emphasis on sustainable energy solutions underscores a vital need for hydrogen as a clean, decarbonizing, and efficient energy carrier. This necessity is driving extensive research into alternative feedstocks for hydrogen production. Promising resources like sugarcane bagasse and bread waste, valued for their abundance and high sugar content, can be a promising feedstock for hydrogen. Processes, such as steam reforming of ethanol and aqueous-phase reforming of xylitol, effectively utilize sugarcane bagasse and bread waste to produce hydrogen, supporting a circular bioeconomy and reducing dependence on fossil fuels. This study aims to investigate the process design and techno-economic feasibility of hydrogen production from sugarcane bagasse and bread waste. Results show that sugarcane bagasse-based feedstock requires higher capital investment and annual operational costs, at 68.3 M$ and 24.3 M$ per year compared to bread waste-based feedstock, which involves 49.8 M$ and 18.74 M$ per year, respectively. Profitability analysis indicated that bread waste-based hydrogen production was more economically viable, with a higher net present value of 36.45 M$ and a higher internal rate of return of 17 %, along with a payback period of 11 years. A sensitivity analysis revealed that the selling price of hydrogen and fixed capital investment were the most influential parameters affecting the net present value. These findings highlight the economic advantages of utilizing bread waste over sugarcane bagasse, suggesting that bread waste is a more cost-effective and sustainable option for hydrogen production. By prioritizing bread waste as a feedstock, it is possible to achieve significant economic benefits, making it a strategic choice for future hydrogen production initiatives and advancing renewable energy technologies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comprehensive techno-economic and environmental assessment for 2,3-butanediol production from bread waste
    (Elsevier, 2024-11-15) Tiwari, Bikash R.; Maity, Sunil K.; Brar, Satinder K.; Chew, Kit Wayne; Kumar, Gopalakrishnan; Kumar, Vinod
    Bread waste (BW) is a common food waste in Europe and North America and has enormous potential as a biorefinery substrate for the sustainable synthesis of various platform chemicals. Our previous work made use of BW for the fermentative production of 2,3–butanediol (BDO). The present work evaluated the economic prospects and environmental consequences associated with the overall processes, handling 100 metric tons BW per day. The comprehensive process design using Aspen Plus and integrated techno-economic and environmental assessment was carried out for two different BW hydrolysis scenarios: acid and enzyme hydrolysis, followed by fermentation and extraction-based downstream BDO separation. The optimal heat exchanger network was designed using pinch analysis, which improved the energy efficiency of the processes significantly, with about 10 % savings of BDO production costs. Despite this improvement, the BDO derived from BW was exorbitant (4.2–6.9 $/kg) compared to the market price (3.23 $/kg) due to relatively higher capital investment for the current plant capacity. Further, the process inventory was modelled in SimaPro v9.1.0 to estimate the environmental consequences of these production processes for various impact categories, such as global warming (2.63 – 3.19 kg CO2 eq.), marine eutrophication (3.55 × 10-4 – 4.01 × 10-4 kg N eq.), terrestrial ecotoxicity (6.44 – 7.88 kg 1,4 − DCB), etc. Sensitivity and uncertainty analyses were also conducted to establish the reliability of the results. It was found that the enzyme hydrolysis was associated with lower environmental impacts than acid hydrolysis. This comprehensive study can be used as a guideline for developing sustainable BW-based biorefinery in the future.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrated biorefinery for bioethanol and succinic acid co-production from bread waste: techno-economic feasibility and life cycle assessment
    (Elsevier, 2024-02-01) Hafyan, Rendra Hakim; Mohanarajan, Jasmithaa; Uppal, Manaal; Kumar, Vinod; Narisetty, Vivek; Maity, Sunil K.; Sadhukhan, Jhuma; Gadkari, Siddharth
    In this study, an advanced decarbonization approach is presented for an integrated biorefinery that co-produces bioethanol and succinic acid (SA) from bread waste (BW). The economic viability and the environmental performance of the proposed BW processing biorefinery is evaluated. Four distinctive scenarios were designed and analysed, focusing on a plant capacity that processes 100 metric tons (MT) of BW daily. These scenarios encompass: (1) the fermentation of BW into bioethanol, paired with heat and electricity co-generation from stillage, (2) an energy-optimized integration of Scenario 1 using pinch technology, (3) the co-production of bioethanol and SA by exclusively utilizing fermentative CO2, and (4) an advanced version of Scenario 3 that incorporates carbon capture (CC) from flue gas, amplifying SA production. Scenarios 3 and 4 were found to be economically more attractive with better environmental performance due to the co-production of SA. Particularly, Scenario 4 emerged as superior, showcasing a payback period of 2.2 years, a robust internal rate of return (33% after tax), a return on investment of 32%, and a remarkable net present value of 163 M$. Sensitivity analysis underscored the decisive influence of fixed capital investment and product pricing on economic outcomes. In terms of environmental impact, Scenario 4 outperformed other scenarios across all impact categories, where global warming potential, abiotic depletion (fossil fuels), and human toxicity potential were the most influential impact categories (−0.344 kg CO2-eq, −16.2 MJ, and −0.3 kg 1,4-dichlorobenzene (DB)-eq, respectively). Evidently, the integration of CC unit to flue gas in Scenario 4 substantially enhances both economic returns and environmental sustainability of the biorefinery.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Lactic acid and biomethane production from bread waste: a techno-economic and profitability analysis using pinch technology
    (Royal Society of Chemistry, 2023-06-07) Mailaram, Swarnalatha; Narisetty, Vivek; Maity, Sunil K.; Gadkari, Siddharth; Thakur, Vijay Kumar; Russelle, Stephen; Kumar, Vinod
    Lactic acid (LA) is a vital platform chemical with diverse applications, especially for biodegradable polylactic acid. Bread waste (BW) is sugar-rich waste biomass generated in large quantities in residential and commercial operations. Recently, we evaluated the potential of BW for LA production by Bacillus coagulans under non-sterile conditions. This work presents a techno-economic and profitability analysis for valorizing 100 metric tons of BW per day to alleviate environmental pollution with concurrent production of LA and biomethane. We compared two fermentation approaches: acid-neutral (Scenario I) and low pH (Scenario II). Traditional esterification with methanol, followed by hydrolysis of methyl lactate, was employed for downstream separation to obtain polymer-grade LA. High-pressure steam was generated from solid debris via anaerobic digestion to complement energy demands partly. Energy consumption was further attenuated by process integration using pinch technology, with around 15% and 11% utility cost savings for Scenario I and II, respectively. These processes were capital-intensive, with 42–46% of LA production cost stemming from direct and indirect costs. Utilities were the major cost-contributing factor (19–21%) due to energy-intensive water evaporation from dilute fermentation broth. Due to additional processing steps, capital investment and operating costs were slightly higher in Scenario I than in Scenario II. LA manufacturing cost was thus more for Scenario I ($2.07 per kg) than Scenario II ($1.82 per kg). The minimum LA selling price for Scenario I and II were $3.52 and $3.22 per kg, respectively, with five-year payback periods and 8.5% internal rates of return. LA was slightly more expensive for decentralized BW processing than the market price.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Life cycle assessment of fermentative production of lactic acid from bread waste based on process modelling using pinch technology
    (Elsevier, 2023-09-22) Vanapalli, Kumar Raja; Bhar, Rajarshi; Maity, Sunil K.; Dubey, Brajesh K.; Kumar, Sandeep; Kumar, Vinod
    Bread waste (BW), a rich source of fermentable carbohydrates, has the potential to be a sustainable feedstock for the production of lactic acid (LA). In our previous work, the LA concentration of 155.4 g/L was achieved from BW via enzymatic hydrolysis, which was followed by a techno-economic analysis of the bioprocess. This work evaluates the relative environmental performance of two scenarios - neutral and low pH fermentation processes for polymer-grade LA production from BW using a cradle-to-gate life cycle assessment (LCA). The LCA was based on an industrial-scale biorefinery process handling 100 metric tons BW per day modelled using Aspen Plus. The LCA results depicted that wastewater from anaerobic digestion (AD) (42.3–51 %) and cooling water utility (34.6–39.5 %), majorly from esterification, were the critical environmental hotspots for LA production. Low pH fermentation yielded the best results compared to neutral pH fermentation, with 11.4–11.5 % reduction in the overall environmental footprint. Moreover, process integration by pinch technology, which enhanced thermal efficiency and heat recovery within the process, led to a further reduction in the impacts by 7.2–7.34 %. Scenario and sensitivity analyses depicted that substituting ultrapure water with completely softened water and sustainable management of AD wastewater could further improve the environmental performance of the processes.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Life cycle assessment of microbial 2,3-butanediol production from brewer’s spent grain modeled on pinch technology
    (American Chemical Society, 2023-05-22) Tiwari, Bikash Ranjan; Bhar, Rajarshi; Dubey, Brajesh Kumar; Maity, Sunil K.; Brar, Satinder Kaur; Kumar, Gopalakrishnan; Kumar, Vinod
    Microbial production of 2,3-butanediol (BDO) has received considerable attention as a promising alternate to fossil-derived BDO. In our previous work, BDO concentration >100 g/L was accumulated using brewer’s spent grain (BSG) via microbial routes which was followed by techno-economic analysis of the bioprocess. In the present work, a life cycle assessment (LCA) was conducted for BDO production from the fermentation of BSG to identify the associated environmental impacts. The LCA was based on an industrial-scale biorefinery processing of 100 metric tons BSG per day modeled using ASPEN plus integrated with pinch technology, a tool for achieving maximum thermal efficiency and heat recovery from the process. For the cradle-to-gate LCA, the functional unit of 1 kg of BDO production was selected. One-hundred-year global warming potential of 7.25 kg CO2/kg BDO was estimated while including biogenic carbon emission. The pretreatment stage followed by the cultivation and fermentation contributed to the maximum adverse impacts. Sensitivity analysis revealed that a reduction in electricity consumption and transportation and an increase in BDO yield could reduce the adverse impacts associated with microbial BDO production.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanism-based thermodynamic analysis for one-step and two-step ethanol-to-1,3-butadiene conversion processes
    (American Chemical Society, 2024-11-27) Rahman, Md Ziyaur; Varma, Abhishek R.; Gadkari, Siddharth; Tawai, Atthasit; Sriariyanun, Malinee; Kumar, Vinod; Maity, Sunil K.
    Renewable 1,3-butadiene (BD) is essential for sustainability of the synthetic rubber sector. This work presents a comprehensive thermodynamic analysis for one- and two-step ethanol-to-BD conversion processes. The two-step process comprises ethanol dehydrogenation, followed by the condensation of acetaldehyde with another ethanol molecule into BD. The process involves a complex reaction network with a wide range of byproducts depending on the nature of the catalysts and operating conditions, lacking unique consensus on the C-C bond-forming mechanism. This study elucidates the temperature regime for the spontaneity of the reactions proposed in various mechanisms and side reactions based on the standard Gibbs free energy change. The equilibrium conversion and product selectivity were further calculated under a wide temperature and pressure range. The overall reaction in the one-step process is thermodynamically spontaneous above 417 K, while the first and second steps of the two-step process are spontaneous above 550 and 285 K, respectively. Excepting Prins condensation, other mechanisms lack the spontaneity of all reaction steps. The equilibrium BD selectivity is favorable at elevated temperatures and low pressures. The addition of acetaldehyde in the two-step process has a favorable impact with higher BD selectivity, the maximum being at a 1:1 molar ratio of ethanol/acetaldehyde. This study elucidates thermodynamic insights into existing mechanisms and drives the evolution of a feasible mechanism. This effort will eventually help design novel catalysts and optimized processes for sustainable biobased BD production using ethanol derived from renewable feedstocks, aligning with the global commitment to greener and resource-friendly chemical manufacturing.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Recent advances in bio-based production of top platform chemical, succinic acid: an alternative to conventional chemistry
    (Springer Nature, 2024-05-29) Kumar, Vinod; Kumar, Pankaj; Maity, Sunil K.; Agrawal, Deepti; Narisetty, Vivek; Jacob, Samuel; Kumar, Gopalakrishnan; Bhatia, Shashi Kant; Kumar, Dinesh; Vivekanand, Vivekanand
    Succinic acid (SA) is one of the top platform chemicals with huge applications in diverse sectors. The presence of two carboxylic acid groups on the terminal carbon atoms makes SA a highly functional molecule that can be derivatized into a wide range of products. The biological route for SA production is a cleaner, greener, and promising technological option with huge potential to sequester the potent greenhouse gas, carbon dioxide. The recycling of renewable carbon of biomass (an indirect form of CO2), along with fixing CO2 in the form of SA, offers a carbon-negative SA manufacturing route to reduce atmospheric CO2 load. These attractive attributes compel a paradigm shift from fossil-based to microbial SA manufacturing, as evidenced by several commercial-scale bio-SA production in the last decade. The current review article scrutinizes the existing knowledge and covers SA production by the most efficient SA producers, including several bacteria and yeast strains. The review starts with the biochemistry of the major pathways accumulating SA as an end product. It discusses the SA production from a variety of pure and crude renewable sources by native as well as engineered strains with details of pathway/metabolic, evolutionary, and process engineering approaches for enhancing TYP (titer, yield, and productivity) metrics. The review is then extended to recent progress on separation technologies to recover SA from fermentation broth. Thereafter, SA derivatization opportunities via chemo-catalysis are discussed for various high-value products, which are only a few steps away. The last two sections are devoted to the current scenario of industrial production of bio-SA and associated challenges, along with the author's perspective.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Recent advances in fermentative production of C4 diols and their chemo-catalytic upgrading to high-value chemicals
    (Elsevier, 2023-09-01) Varma, Abhishek R.; Shrirame, Bhushan S.; Maity, Sunil K.; Agrawal, Deepti; Malys, Naglis; Rios-Solis, Leonardo; Kumar, Gopalakrishnan; Kumar, Vinod
    The current era is witnessing the transition from a fossil-dominated economy towards sustainable and low-carbon green manufacturing technologies at economical prices with reduced energy usage. The biological production of chemical building blocks from biomass using cell factories is a potential alternative to fossil-based synthesis. However, microbes have their own limitations in generating the whole spectrum of petrochemical products. Therefore, there is a growing interest in an integrated/hybrid approach where products containing active functional groups obtained by biological upgrading of biomass are converted via chemo-catalytic routes. The present review focuses on the biological production of three important structural isomers of C4 diols, 2,3-, 1,3-, and 1,4-butanediol, which are currently manufactured by petrochemical route to meet the soaring global market demand. The review starts with justifications for the integrated approach and summarizes the current status of the biological production of these diols, including the substrates, microorganisms, fermentation technology and metabolic/pathway engineering. This is followed by a comprehensive review of recent advances in catalytic upgrading of C4 diols to generate a range of products. The roles of various active sites in the catalyst on catalytic activity, product selectivity, and catalyst stability are discussed. The review also covers examples of integrated approaches, addresses challenges associated with developing end-to-end processes for bio-based production of C4 diols, and underlines existing limitations for their upgrading via direct catalytic conversion. Finally, the concluding remarks and prospects emphasise the need for an integrated biocatalytic and chemo-catalytic approach to broaden the spectrum of products from biomass.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Techno-economic analysis for the production of 2,3-butanediol from brewers’ spent grain using pinch technology
    (American Chemical Society, 2022-12-31) Mailaram, Swarnalatha; Narisetty, Vivek; Ranade, Vivek V.; Kumar, Vinod; Maity, Sunil K.
    2,3-Butanediol (BDO) is a versatile platform chemical with great potential as the precursor for various value-added derivatives across different industrial sectors. This work thus presents a techno-economic feasibility study for microbial BDO production from C5 and C6 sugars derived from brewers’ spent grain (BSG). Water-soluble carbohydrates obtained from pretreatment were further utilized for the biogas generation. Besides, the solid residue generated after fermentation and biogas were used to generate high-pressure steam and electricity. The process integration was carried out using pinch technology for various BDO titers and plant capacities. The pinch analysis helped in the reduction of hot and cold utility consumption by about 34 and 18%, respectively. The minimum hot and cold utility consumption was 4.59 and 10.97 MW for 100 MT BSG per day with 100 g/L BDO titer, respectively. The cooling water consumption was decreased, and electricity generation was increased with the increase in BDO titer, while the BDO production cost reduced marginally. For 100 MT BSG per day, the BDO production cost was US$1.84, US$1.76, and US$1.74/kg for BDO titers of 80, 100, and 120 g/L, respectively. However, the unitary BDO production cost was only US$1.07 for 2000 MT BSG per day. For 100 g/L BDO titer, the minimum BDO selling price was US$3.63 and US$2.00/kg for 100 and 2000 MT BSG per day, respectively, with 8.5% return on investment and 5 years as the payback period.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Techno-economic analysis of 2,3-butanediol production from sugarcane bagasse
    (American Chemical Society, 2023-05-22) Gadkari, Siddharth; Narisetty, Vivek; Maity, Sunil K.; Manyar, Haresh; Mohanty, Kaustubha; Jeyakumar, Rajesh Banu; Pant, Kamal Kishore; Kumar, Vinod
    Sugarcane bagasse (SCB) is a significant agricultural residue generated by sugar mills based on sugarcane crop. Valorizing carbohydrate-rich SCB provides an opportunity to improve the profitability of sugar mills with simultaneous production of value-added chemicals, such as 2,3-butanediol (BDO). BDO is a prospective platform chemical with multitude of applications and huge derivative potential. This work presents the techno-economic and profitability analysis for fermentative production of BDO utilizing 96 MT of SCB per day. The study considers plant operation in five scenarios representing the biorefinery annexed to a sugar mill, centralized and decentralized units, and conversion of only xylose or total carbohydrates of SCB. Based on the analysis, the net unit production cost of BDO in the different scenarios ranged from 1.13 to 2.28 US$/kg, while the minimum selling price varied from 1.86 to 3.99 US$/kg. Use of the hemicellulose fraction alone was shown to result in an economically viable plant; however, this was dependent on the condition that the plant would be annexed to a sugar mill which could supply utilities and the feedstock free of cost. A standalone facility where the feedstock and utilities were procured was predicted to be economically feasible with a net present value of about 72 million US$, when both hemicellulose and cellulose fractions of SCB were utilized for BDO production. Sensitivity analysis was also conducted to highlight some key parameters affecting plant economics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Techno-economic viability of bio-based methyl ethyl ketone production from sugarcane using integrated fermentative and chemo-catalytic approach: process integration using pinch technology
    (Elsevier, 2024-06-01) Varma, Abhishek R.; Shrirame, Bhushan S.; Gadkari, Siddharth; Vanapalli, Kumar Raja; Kumar, Vinod; Maity, Sunil K.
    Butanediols are versatile platform chemicals that can be transformed into a spectrum of valuable products. This study examines the techno-commercial feasibility of an integrated biorefinery for fermentative production of 2,3-butanediol (BDO) from sucrose of sugarcane (SC), followed by chemo-catalytic upgrading of BDO to a carbon-conservative derivative, methyl ethyl ketone (MEK), with established commercial demand. The techno-economics of three process configurations are compared for downstream MEK separation from water and co-product, isobutyraldehyde (IBA): (I) heterogeneous azeotropic distillation of MEK-water and extractive separation of (II) MEK and (III) MEK-IBA from water using p-xylene as a solvent. The thermal efficiency of these manufacturing processes is further improved using pinch technology. The implementation of pinch technology reduces 8% of BDO and 9–10% of MEK production costs. Despite these improvements, raw material and utility costs remain substantial. The capital expenditure is notably higher for MEK production from SC than BDO alone due to additional processing steps. The extraction based MEK separation is the simplest process configuration despite marginally higher capital requirements and utility consumption with slightly higher production costs than MEK-water azeotropic distillation. Economic analysis suggests that bio-based BDO is cost-competitive with its petrochemical counterpart, with a minimum gross unitary selling price of US$ 1.54, assuming a 15% internal rate of return over five-year payback periods. However, renewable MEK is approximately 16–24% costlier than the petrochemical route. Future strategies must focus on reducing feedstock costs, improving BDO fermentation efficacy, and developing a low-cost downstream separation process to make renewable MEK commercially viable.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Technoeconomics of sugar cane bagasse valorization to lactic acid using pinch technology: distillation vs reactive distillation
    (American Chemical Society (ACS), 2025-05-12) Maity, Sunil K.; Agrawal, Deepti; Gadkari, Siddharth; Vanapalli, Kumar Raja; Yong, Yang-Chun; Zhu, Daochen; Chen, Chang; Kumar, Vinod
    Sugar cane is one of the largest agricultural crops, and sugar cane bagasse (SCB), a major waste from sugar cane processing, is an abundant and inexpensive source of fermentable sugars for producing diverse platform chemicals. The present study evaluates the technoeconomic viability of L (+) lactic acid (LA) production from SCB with different stand-alone process scenarios modeled using the pinch method. It critically evaluates various cost-contributing factors when a sugar-rich hydrolysate is obtained via two different pretreatment methods: dilute acid and alkali. The cost-benefit of LA purification by conventional distillation (CD) is further compared to reactive distillation (RD). The pinch method cuts the LA manufacturing costs by 10-11%. Alkali pretreatment combined with RD involves a lower capital investment and utility consumption than the CD counterpart and slightly less LA manufacturing cost. However, LA production via dilute acid pretreatment and purification by RD emerges as the most profitable scenario due to capital investment, utility demand, and chemical consumption savings. This scenario offers the minimum LA selling price of 2.3 US$/kg for an 8.5% discount factor and a 5 year payback period. However, for a 20 year plant life and 2.5 US$/kg factory-gate LA selling price, the internal rate of return was 31% and the payback period was 4.4 years for an 8.5% discount factor.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback