Browsing by Author "Mahrukh, Mahrukh"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Computational modelling of thermal spraying processes(Cranfield University, 2016-03) Mahrukh, Mahrukh; Gu, Sai; Sher, IlaiThe main aim of this project is to model the effects of varied injection parameters on the gas dynamics and droplet dynamics of the HVSFS and SP- HVOFS processes for improving the droplet breakup and evaporation to enhance the nanoparticles heating and deposition efficiency. Thermal spraying processes are widely used to generate thermal-, corrosion-, and wear-resistant layers over the machine parts, to increase the durability of the equipment under severe environmental conditions. The liquid feedstock is used to achieve nanostructured coatings. It is used either in the form of a suspension or a solution precursor. The suspension is a mixture of solid nanoparticles suspended in a liquid medium consisting, for instance, of water, ethanol, or isopropanol. This dispersion mechanism in a liquid carrier provides adequate flowability to the nanoparticles, which cannot be handled by conventional gas- based feeding systems, whereas the solution precursor is mixed at the molecular level; hence, more uniform phase composition and properties are expected in the sprayed coatings as compared to the suspension and conventional powder spraying. Firstly, experiments are conducted to analyse the effects of different precursor concentrations, solvent types and injection nozzles on the size and morphology of synthesized nanoparticles. The results indicate that the particle size increased with increasing precursor concentration due to the variations in the physical properties of the mixture solution. The higher precursor concentrations had an adverse effect on the droplet atomization and evaporation process that led to bigger size particle formation. The use of aqueous solvent has some limits and with higher precursor concentration the surface tension increases that resulted in the reduction of droplets’ disintegration, and thus bigger size precursor droplets generate larger nanoparticles. A mixture of aqueous-organic solvents and pure organic precursors are preferred to improve the process efficiency of the nanoparticles size and morphology. Furthermore, the nanoparticles size can be controlled by using liquid feedstock atomization before injecting into the HVOF torch. A new effervescent injection nozzle is designed and compared to different types of existing injection nozzles, to see the variations in the droplet disintegration, and its effects on the performance of the HVOF torch processes. It is detected that the atomization would result in smaller size particles with homogeneous morphology. In a numerical study, different droplet injection types are analysed to see their effects on the gas and droplet dynamics inside the HVOF torch. The group-type injection (GTI) and effervescent-type atomization (ETI) are used effectively to overcome the heat losses and delays in the droplet evaporation. These approaches reduce the thermal and kinetic energy losses in the suspension-fed-HVOF torch, thereby improving the coating formation. The effects of using multicomponent water-ethanol mixture injection in the HVOF torch are also modelled, and its impact on the droplet breakup and evaporation are studied. The organic solvents have a low heat of vaporization and surface tension, and can effectively be used in the HVOF spraying process over the water-based solvents. Furthermore, nanoparticles are suspended in the liquid feedstock and injected into the HVOF torch. The effect of increasing nanoparticles’ concentration in the feedstock and its consequence on the gas dynamics, droplet breakup and evaporation are analysed. The augmentation in the nanoparticles loading in the suspension droplets can decrease the droplet breakup and evaporation rate because the required heat of vaporization increases significantly. Moreover, the size of injection droplet affects the droplet fragmentation process; bigger sized droplets observed a delay in their evaporation that resulted in coating porosity. The results suggest that smaller droplet sizes are preferred in coating applications involving a higher concentration of nanoparticles with high melting point. Further, the gas flow rates (GFRs) are regulated to control the droplet dispersion, atomization and evaporation inside the solution precursor fed-HVOF torch. The size of the droplet diameter is decreased by an increment in the GFR, as higher combustion rates increase the combustion flame enthalpy and kinetic energy. Moreover, the increase in the oxygen/fuel flow rates dilutes the injected precursor. It reduces ZrO2 concentration in the process and decreases the rate of particle collision; as a result, non-agglomerated nanoparticles can be obtained.Item Open Access Effects of angular injection, and effervescent atomization on high-velocity suspension flame spray process(Elsevier, 2016-06-11) Mahrukh, Mahrukh; Kumar, Arvind; Gu, SaiThis work presents the nanostructured coating formation using suspension thermal spraying through the HVOF torch. The nanostructured coating formation requires nanosize powder particles to be injected inside a thermal spray torch using liquid feedstock. The liquid feedstock needs to be atomized when injected into the high-velocity oxygen fuel (HVOF) torch. This paper presents the effects of angular injection and effervescent atomization of the liquid feedstock on gas and droplet dynamics, vaporization rate, and secondary breakup in the high-velocity suspension flame spray (HVSFS) process. Different angular injections are tested to obtain the optimum value of the angle of injection. Moreover, effervescent atomization technique based on twin-fluid injection has been studied to increase the efficiency of the HVSFS process. Different solid nanoparticle concentrations in suspension droplets are considered. In angular injection the droplets are injected into the core of the combustion zone; this immediately evaporates the droplets, and evaporation is completed within the torch. The value of 10°–15° is selected as the optimal angle of injection to improve the gas and droplet dynamics inside the torch, and to avoid the collision with the torch's wall. The efficiency of the effervescent atomization can be enhanced by using high gas-to-liquid mass flow rate ratio, to increase the spray cone angle for injecting the suspension liquid directly into the combustion flame. It is also found that the increment in the nanoparticle concentration has no considerable effects on the droplet disintegration process. However, the location of evaporation is significantly different for homogeneous and non-homogeneous droplets.Item Open Access Modeling the effects of concentration of solid nanoparticles in liquid feedstock injection on high-velocity suspension flame spray process(American Chemical Society, 2016-02-03) Mahrukh, Mahrukh; Kumar, Arvind; Gu, Sai; Kamnis, S.; Gozali, E.This paper presents the effects of the concentration of solid nanoparticles in the liquid feedstock injection on the high-velocity suspension flame spray (HVSFS) process. Four different concentrations of solid nanoparticles in suspension droplets with various droplet diameters are used to study gas dynamics, vaporization rate, and secondary breakup. Two types of injections, viz. surface and group, are used. The group-type injection increases the efficiency of droplet disintegration and the evaporation process and reduces the gas cooling. The initiation of the fragmentation process is difficult for small droplets carrying a high concentration of nanoparticles. Also, smaller droplets undergo rapid vaporization, leaving clogs of nanoparticles in the middle of the barrel. For larger droplets, severe fragmentation occurs inside the combustion chamber. For a higher concentration of nanoparticles, droplets exit the gun without complete evaporation. The results suggest that, in coating applications involving a higher concentration of nanoparticles, smaller droplet sizes are preferred.Item Open Access Numerical analysis of multicomponent suspension droplets in high-velocity flame spray process(Springer Science Business Media, 2014-08-01T00:00:00Z) Gozali, E.; Mahrukh, Mahrukh; Gu, Sai; Kamnis, S.The liquid feedstock or suspension as a different mixture of liquid fuel ethanol and water is numerically studied in high-velocity suspension flame spray (HVSFS) process, and the results are compared for homogenous liquid feedstock of ethanol and water. The effects of mixture on droplet aerodynamic breakup, evaporation, combustion, and gas dynamics of HVSFS process are thoroughly investigated. The exact location where the particle heating is initiated (above the carrier liquid boiling point) can be controlled by increasing the water content in the mixture. In this way, the particle inflight time in the high-temperature gas regions can be adjusted avoiding adverse effects from surface chemical transformations. The mixture is modeled as a multicomponent droplet, and a convection/diffusion model, which takes into account the convective flow of evaporating material from droplet surface, is used to simulate the suspension evaporation. The model consists of several sub-models that include premixed combustion of propane-oxygen, non-premixed ethanol-oxygen combustion, modeling of multicomponent droplet breakup and evaporation, as well as heat and mass transfer between liquid droplets and gas phase.Item Open Access Numerical analysis of the effects of using effervescent atomization on solution precursor thermal spraying process(American Chemical Society, 2017-09-09) Mahrukh, Mahrukh; Kumar, Arvind; Nabavi, Seyed Ali; Gu, Sai; Sher, IlaiThe solution precursor thermal spraying (SPTS) process is used to obtain nano-sized dense coating layers. During the SPTS process, the in situ formation of nanoparticles is mainly dependent on combustion gas-temperature, gas-pressure, gas-velocity, torch design, fuel type, and Oxygen-Fuel (O/F) mixture ratios, precursor injection feeding ratio and flow rates, properties of fuel and precursor and its concentration, and the precursor droplets fragmentation. The focus of the present work is the numerical study of atomization of pure solvent droplets streams into fine droplets spray using an effervescent twin-fluid atomizer. For better droplet disintegration appropriate atomization techniques can be used for injecting the precursor in the CH-2000 high-velocity oxygen fuel (HVOF) torch. The CFD computations of the SPTS process are essentially required because the internal flow physics of HVOF process cannot be examined experimentally. In this research for the first time, an effervescent twin-fluid injection nozzle is designed to inject the solution precursor into the HVOF torch, and the effects on the HVOF flame dynamics are analyzed. The computational fluid dynamics (CFD) modeling is performed using Linearized Instability Sheet Atomization (LISA) model and validated by the measured values of droplets size distribution at varied Gas-to-Liquid flow rate Ratios (GLR). Different nozzle diameters with varied injection parameters are numerically tested, and results are compared to observe the effects on the droplet disintegration and evaporation. It is concluded that the effervescent atomization nozzle used in the CH-2000 HVOF torch can work efficiently even with bigger exit diameters and with higher values of viscosity and surface-tension of the solution. It can generate smaller size precursor droplets (2 µm