CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mašková, Lucie"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Assessment of silt from sand and gravel processing as a suitable sub-soil material in land restoration: A glasshouse study
    (Elsevier, 2018-12-01) Mašková, Lucie; Simmons, Robert W.; De Baets, Sarah; Montero, Moran; Delmer, Aude; Sakrabani, Ruben
    Annually, sand and gravel processing generates approximately 20 million tonnes of non-commercial by-product as fine silt particles (<63 μm) which constitutes approximately 20% of quarry production in the UK. This study is significant as it investigated the use of quarry silt as a sub-soil medium to partially substitute soil-forming materials whilst facilitating successful post-restoration crop establishment. In a glasshouse pot experiment, top-soil and sub-soil layering was simulated, generating an artificial sub-soil medium by mixing two quarry non-commercial by-products, i.e. silt and overburden. These were blended in three ratios (100:0, 70:30, 50:50). Pots were packed to two bulk densities (1.3 and 1.5 g cm-3) and sown with three cover crops used in the early restoration process namely winter rye (Secale cereale), white mustard (Sinapis alba) and a grassland seed mixture (Lolium perenne, Phleum pratense, Poa pratensis, Festuca rubra). Three weeks into growth, the first signs of nitrogen (N) deficiency were observed in mustard plants, with phosphorus (P) and potassium (K) deficiencies observed at 35 days. Rye exhibited minor N deficiency symptoms four weeks into growth, whilst the grassland mixture showed no deficiency symptoms. The 70:30 silt:overburden sub-soil blend resulted in significantly higher Root Mass Densities of grassland seed mixture and rye in the sub-soil layer as compared with the other blends. The innovation in this work is the detailed physical, chemical and biological characterisation of silt:overburden blends and effects on root development of plants commonly used in early restoration to bio-engineer soil structural improvements.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Best management practices to alleviate deep-seated compaction in asparagus (Asparagus officinalis) interrows (UK)
    (Elsevier, 2021-07-03) Mašková, Lucie; Simmons, Robert W.; Deeks, Lynda K.; De Baets, Sarah
    Field operations associated with UK asparagus production (re-ridging and intensive foot and vehicular trafficking of the wheelings) can result in severe deep-seated compaction in interrows, impacting on crop health and productivity. In this project, we investigate the long-term efficacy of a range of Best Management Practices (BMPs) targeted at preventing or remediating soil compaction in asparagus (Asparagus officinalis L.) interrows as compared to Conventional practice. BMPs included (1) companion crops - Rye (Sereale cecale L.), Mustard (Sinapis alba L.), (2) interrow surface mulch applications (straw mulch and PAS 100 compost in combination with shallow soil disturbance (SSD)), (3) modifications of the conventional tillage practice (re-ridging (R) or not ridging (NR) and applying SSD or not applying SSD) and (4) a zero-tillage option. In general, companion cropping had no effect on soil compaction or water infiltration rates as compared to the Conventional practice. Application and incorporation of straw mulch or PAS 100 compost however significantly reduced soil compaction of the interrows to >0.45 m beyond the working depth of the subsoiler (0.25 m). Composts and mulches in combination with SSD significantly reduce deep-seated compaction of the interrows within 3 years of annual application. Further, Conventional practice equivalent treatment (Bare soil No-SSD R) was associated with significantly higher PR values as compared to the zero-tillage (Bare soil No-SSD NR). These findings show that the extremely high levels of deep-seated compaction in interrows, associated with re-ridging, foot and vehicular traffic can be alleviated using surface mulches in combination with SSD.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A DNA-barcode biodiversity standard analysis method (DNA-BSAM) reveals a large variance in the effect of a range of biological, chemical and physical soil management interventions at different sites, but location is one of the most important aspects determining the nature of agricultural soil microbiology
    (Elsevier, 2023-07-06) Fernández-Huarte, Matías; Elphinstone, John G.; Adams, Ian P.; Vicente, Joana G.; Bhogal, Anne; Watson, Christine A.; Dussart, Francois; Stockdale, Elizabeth A.; Walshaw, John; McGreig, Sam; Simmons, Robert W.; Mašková, Lucie; Deeks, Lynda K.; Goddard, Matthew R.
    There are significant knowledge gaps in our understanding of how to sustainably manage agricultural soils to preserve soil biodiversity. Here we evaluate and quantify the effects of agricultural management and location on soil microbiology using nine field trials that have consistently applied different soil management practices in the United Kingdom using DNA barcode sequence data. We tested the basic hypothesis that various agricultural management interventions have a significant and greater effect on soil bacterial and fungal diversity than geographic location. The analyses of soil microbial DNA sequence data to date has lacked standardisation which prevents meaningful comparisons across sites and studies. Therefore, to analyse these data and crucially compare and quantify the size of any effects on soil bacterial and fungal biodiversity between sites, we developed and employed a post-sequencing DNA-barcode biodiversity standard analysis method (DNA-BSAM). The DNA-BSAM comprises a series of standardised bioinformatic steps for processing sequences but more importantly defines a standardised set of ecological indices and statistical tests. Use of the DNA-BSAM reveals the hypothesis was not strongly supported, and this was primarily because: 1) there was a large variance in the effects of various management interventions at different sites, and 2) that location had an equivalent or greater effect size than most management interventions for most metrics. Some dispersed sites imposed the same organic amendments interventions but showed different responses, and this combined with observations of strong differences in soil microbiomes by location tentatively suggests that any effect of management may be contingent on location. This means it could be unreliable to extrapolate the findings of individual trials to others. The widespread use of a standard approach will allow meaningful cross-comparisons between soil microbiome studies and thus a substantial evidence-base of the effects of land-use on soil microbiology to accumulate and inform soil management decisions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impacts of long-term application of best management practices on yields and root carbohydrate content in asparagus (Asparagus officinalis) (UK)
    (Elsevier, 2023-04-20) Mašková, Lucie; Simmons, Robert W.; Deeks, Lynda K.; De Baets, Sarah; Drost, Daniel T.
    Yield physiology of asparagus (Asparagus officinalis L.) is strongly influenced by biotic factors such as crown and root rot caused by Fusarium spp. and by abiotic conditions such as precipitation or temperatures, duration of each harvest, and field management practices. Asparagus yields are linked to the availability of soluble carbohydrates (CHO) in the storage root system which is considered a key factor in asparagus productivity. The aim of this study was to quantify the impacts of the long-term application of a range of potential Best Management Practices (BMPs) on yield and storage root carbohydrate content in green asparagus in a long-term field trial. The trial was established in 2016 with the asparagus ‘Gijnlim’ variety. Commercial yields were collected in 2018, 2019 and 2020. Root carbohydrate content was determined in 2019 and 2020. BMPs included (1) companion crops - Rye (Secale cereale L.), Mustard (Sinapis alba L.), (2) interrow surface mulch applications of either straw mulch or PAS 100 compost (Publicly available specification) in combination with shallow soil disturbance (SSD), (3) the conventional practice and modifications of the conventional tillage practice by applying SSD or not applying SSD and (4) a zero-tillage option. Annual re-ridging (R) and not ridging (NR) were applied to BMP options 1–3. SSD had no significant impact on asparagus yields while annual re-ridging negatively affected total yields of treatments with bare soil interrows, which were managed without SSD. Conventional practice was associated with a 22% yield reduction and ∼€4250 ha−1 annual loss in potential revenue as compared to the Zero-tillage treatment. Companion cropping with mustard did not have a significant impact on asparagus yields. Rye without annual re-ridging was however associated with yield reductions of > 20% as compared to the Conventional practice. PAS 100 Compost applied in asparagus interrows (at 25 t ha−1 per year) in combination with SSD without annual re-ridging resulted in improvements to yields of 20%, 10% and 34% in 2018, 2019 and 2020, respectively, as compared to the Conventional practice. No correlation was observed between storage root soluble carbohydrate content and asparagus yields. The results of this study confirmed that asparagus yield, and thus total farm income can be significantly improved through implementation of several of the BMPs investigated.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback