CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lyu, Xiangcheng"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Design and experimental tests for novel shapes of floating OWC wave energy converters with the additional purpose of breakwater
    (Elsevier, 2025-06-01) Lyu, Xiangcheng; Mi, Chenhao; Collions, Stan; Chen, Wenchuang; Yang, Danlei; Huang, Luofeng
    The oscillating water column (OWC) is a type of wave energy converter (WEC) that captures the energy of incoming waves. As waves reach the structure, their movement causes the water within an enclosed chamber to oscillate, creating airflow that powers a turbine, generating electricity. This principle can be applied to the design of breakwaters, which can protect marine structures such as floating solar farms and wind turbines. This study involved designing two types of buoyancy chambers for the OWC-WEC and two underneath baffles with adjustable spacing. These configurations were tested in a wave tank to assess wave energy capture, wave attenuation, hydrodynamics, and mooring forces. The experimental results demonstrate that a baffle spacing of 1 m, combined with a V-type buoyancy chamber, significantly enhances the wave energy capture and wave attenuation performance of the OWC. This configuration achieves up to a 57.09 % increase in the capture width ratio and a maximum reduction of 20.88 % in the wave transmission coefficient. Furthermore, mooring line forces are reduced by 21.86 %, while the baffles effectively mitigate pitch motion. Notably, greater pitch reduction improves the capture width ratio. In conclusion, this study introduces a novel wave energy converter, providing key insights for future marine energy development.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A symmetric experimental study of the interaction between regular waves and a pontoon breakwater with novel fin attachments
    (MDPI, 2024-12-02) Lyu, Xiangcheng; Yang, Yifeng; Mi, Chenhao; Tang, Chi Man; Adeboye, Lukman; Farhan, Mohamed; Collins, Stan; Ou, Binjian; Wong, Anson; Duffy, John Gordon; Huang, Luofeng
    Floating breakwaters are widely applied on the ocean water surface to protect human infrastructure from the destructive power of waves. This study designs and investigates the performance of a novel symmetric-pontoon floating breakwater with a symmetric pair of hydrofoils. Based at the Cranfield Ocean Systems Laboratory, the system was constructed and tested in various wave conditions using different fin configurations. The floating structure was anchored using a symmetric four-point mooring system. The tested waves were regular and symmetric perpendicular to the propagating direction. Key parameters, including the attenuated wave amplitude, motions of the breakwater, and the mooring forces, were measured. The wave parameters utilised for testing covered 1.61–5.42 relative wavelength to structural length, with wave heights of 3 cm and 5 cm. Results showed the 90° fin configuration can reduce wave transmission by up to 74%, with the lowest mooring forces at 3.05 relative wavelength, enhancing the performance of wave energy dissipation and structural seakeeping. At 90° setup, the mooring force was lowest at 2.41 relative wavelength. This research can inform novel designs of breakwaters to improve protection abilities for coastal cities and offshore infrastructures, especially renewable energy systems.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback