CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lyburn, Iain D."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Anisotropy visualisation from X-ray diffraction of biological apatite in mixed phase calcified tissue samples
    (Springer, 2025-02-14) Scott, Robert; Lyburn, Iain D.; Cornford, Eleanor; Bouzy, Pascaline; Stone, Nicholas; Greenwood, Charlene; Gosling, Sarah; Arnold, Emily L.; Bouybayoune, Ihsanne; Pinder, Sarah E.; Rogers, Keith
    X-ray diffraction is widely used to characterise the mineral component of calcified tissue. Broadening of the diffraction peaks yields valuable information on the size of coherently diffracting domains, sometimes loosely described as crystallite size or crystallinity. These domains are markedly anisotropic, hence a single number describing their size is misleading. We present a novel variation on a method for visualising crystallographic anisotropy in X-ray diffraction data. This provides an intuitively interpretable depiction of crystalline domain size and anisotropy. The new method involves creating a polar plot of calculated domain thickness for peaks in a diffractogram versus crystallographic direction. Points with the least error are emphasised. Anisotropic domain dimensions are calculated by refining an ellipsoidal model in a whole pattern fit. These dimensions are then used to overlay an ellipse on the peak broadening plot. This is illustrated by application of the method to calcifications in breast tissue with suspected cancer, which frequently contain whitlockite as well as nanocrystalline apatite. Like most biogenic apatite, this exhibits markedly anisotropic peak broadening. The nature of this anisotropy offers potentially useful information on normal function and pathology of calcified tissue and is a frequently neglected crystallographic feature of these materials.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Prostate microcalcification crystallography as a marker of pathology
    (Springer, 2025-04-29) Gosling, Sarah B.; Arnold, Emily L.; Adams, Lois; Cool, Paul; Geraki, Kalotina; Kitchen, Mark O.; Lyburn, Iain D.; Rogers, Keith D.; Snow, Tim; Stone, Nick; Greenwood, Charlene E.
    Prostate cancer remains the most common male cancer; however, treatment regimens remain unclear in some cases due to a lack of agreement in current testing methods. Therefore, there is an increasing need to identify novel biomarkers to better counsel patients about their treatment options. Microcalcifications offer one such avenue of exploration. Microfocus spectroscopy at the i18 beamline at Diamond Light Source was utilised to measure X-ray diffraction and fluorescence maps of calcifications in 10 µm thick formalin fixed paraffin embedded prostate sections. Calcifications predominantly consisted of hydroxyapatite (HAP) and whitlockite (WH). Kendall’s Tau statistics showed weak correlations of ‘a’ and ‘c’ lattice parameters in HAP with GG (rτ = − 0.323, p = 3.43 × 10–4 and rτ = 0.227, p = 0.011 respectively), and a negative correlation of relative zinc levels in soft tissue (rτ = − 0.240, p = 0.022) with GG. Negative correlations of the HAP ‘a’ axis (rτ = − 0.284, p = 2.17 × 10–3) and WH ‘c’ axis (rτ = − 0.543, p = 2.83 × 10–4) with pathological stage were also demonstrated. Prostate calcification chemistry has been revealed for the first time to correlate with clinical markers, highlighting the potential of calcifications as biomarkers of prostate cancer.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Translating microcalcification biomarker information into the laboratory: a preliminary assessment utilizing core biopsies obtained from sites of mammographic calcification
    (Elsevier, 2024-03-12) Lyburn, Iain D.; Scott, Robert; Cornford, Eleanor; Bouzy, Pascaline; Stone, Nicholas; Greenwood, Charlene; Bouybayoune, Ihsanne; Pinder, Sarah E.; Rogers, Keith
    The potential of breast microcalcification chemistry to provide clinically valuable intelligence is being increasingly studied. However, acquisition of crystallographic details has, to date, been limited to high brightness, synchrotron radiation sources. This study, for the first time, evaluates a laboratory-based system that interrogates histological sections containing microcalcifications. The principal objective was to determine the measurement precision of the laboratory system and assess whether this was sufficient to provide potentially clinical valuable information. Materials and methods Sections from 5 histological specimens from breast core biopsies obtained to evaluate mammographic calcification were examined using a synchrotron source and a laboratory-based instrument. The samples were chosen to represent a significant proportion of the known breast tissue, mineralogical landscape. Data were subsequently analysed using conventional methods and microcalcification characteristics such as crystallographic phase, chemical deviation from ideal stoichiometry and microstructure were determined. Results The crystallographic phase of each microcalcification (e.g., hydroxyapatite, whitlockite) was easily determined from the laboratory derived data even when a mixed phase was apparent. Lattice parameter values from the laboratory experiments agreed well with the corresponding synchrotron values and, critically, were determined to precisions that were significantly greater than required for potential clinical exploitation. Conclusion It has been shown that crystallographic characteristics of microcalcifications can be determined in the laboratory with sufficient precision to have potential clinical value. The work will thus enable exploitation acceleration of these latent microcalcification features as current dependence upon access to limited synchrotron resources is minimized.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback