Browsing by Author "Luk, Patrick"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Advancing hydrogen: a closer look at implementation factors, current status and future potential(MDPI, 2023-12-02) Kaheel, Sultan; Ibrahim, Khalifa Aliyu; Fallatah, Gasem; Lakshminarayanan, Venkatasubramanian; Luk, Patrick; Luo, ZhenhuaThis review article provides a comprehensive analysis of the hydrogen landscape, outlining the imperative for enhanced hydrogen production, implementation, and utilisation. It places the question of how to accelerate hydrogen adoption within the broader context of sustainable energy transitions and international commitments to reduce carbon emissions. It discusses influencing factors and policies for best practices in hydrogen energy application. Through an in-depth exploration of key factors affecting hydrogen implementation, this study provides insights into the complex interplay of both technical and logistical factors. It also discusses the challenges of planning, constructing infrastructure, and overcoming geographical constraints in the transition to hydrogen-based energy systems. The drive to achieve net-zero carbon emissions is contingent on accelerating clean hydrogen development, with blue and green hydrogen poised to complement traditional fuels. Public–private partnerships are emerging as catalysts for the commercialisation of hydrogen and fuel-cell technologies, fostering hydrogen demonstration projects worldwide. The anticipated integration of clean hydrogen into various sectors in the coming years signifies its importance as a complementary energy source, although specific applications across industries remain undefined. The paper provides a good reference on the gradual integration of hydrogen into the energy landscape, marking a significant step forward toward a cleaner, greener future.Item Open Access Battery thermal management for microchannel cooling system with scanning flow method(IEEE, 2025-02) Qin, Qing; Luo, Zhenhua; Luk, PatrickThe demand for high-performance electric vehicles has rapidly increased, necessitating rapid charging and efficient thermal battery management. High-energy-density batteries generate massive heat impacting performance, service life and safety. Thermal management plays a critical role in preserving battery integrity by regulating overall temperature and localized heat distribution, thus mitigating the risk of thermal runaway. Varies cooling technologies such as air, liquid, and multi-phase material cooling, have been utilized. However, minimizing the maximum temperature while maintaining temperature uniformity remains a critical challenge in battery thermal management. This paper introduces a novel microchannel cooling system with scanning flow for Li-ion batteries. Computational Fluid Dynamics (CFD) models are developed to investigate scanning flow cooling behavior. Parametric study examines the effects of battery numbers, valve switching frequency, and channel numbers on maximum and minimum temperatures, average temperature, and temperature differences. Furthermore, fluid analysis incorporates heat distribution and velocity behavior to study flow characteristics. Experimental analysis validates the cooling capability of the scanning flow method with a 0.17% error rate. The findings highlight scanning flow as an efficient method, enhancing temperature uniformity by 62.5% and reducing the average temperature difference by 92%. This presents a promising avenue for developing effective thermal management solutions for high-energy-density batteries.Item Open Access Decision support system for sustainable hydrogen production: case study of Saudi Arabia(Elsevier, 2025-02-01) Kaheel, Sultan; Fallatah, Gasem; Luk, Patrick; Ibrahim, Khalifa Aliyu; Luo, ZhenhuaThe global energy sector is undergoing a transition towards sustainable sources, with hydrogen emerging as a promising alternative due to its high energy content and clean-burning properties. The integration of hydrogen into the energy landscape represents a significant advancement towards a cleaner, greener future. This paper introduces an innovative decision support system (DSS) that combines multi-criteria decision-making (MCDM) and decision tree methodologies to optimize hydrogen production decisions in emerging economies, using Saudi Arabia as a case study. The proposed DSS, developed using MATLAB Web App Designer tools, evaluates various scenarios related to demand and supply, cost and profit margins, policy implications, and environmental impacts, with the goal of balancing economic viability and ecological responsibility. The study's findings highlight the potential of this DSS to guide policymakers and industry stakeholders in making informed, scalable, and flexible hydrogen production decisions that align with sustainable development goals. The novel DSS framework integrates two key influencing factors technical and logistical by considering components such as data management, modeling, analysis, and decision-making. The analysis component employs statistical and economic methods to model and assess the costs and benefits of eleven strategic scenarios, while the decision-making component uses these results to determine the most effective strategies for implementing hydrogen production to minimize risks and uncertainties.Item Open Access Floating solar wireless power transfer system for electric ships: design and laboratory tests(Elsevier, 2025-05-15) Ibrahim, Khalifa Aliyu; Maréchal, Timothé Le; Luk, Patrick; Qin, Qing; Huang, Luofeng; Xie, Ying; Verdin, Patrick; Luo, ZhenhuaThe maritime industry is under increasing pressure to decarbonise, presenting an important pathway of transforming the power systems from conventional marine fuels to electric-based. This study proposes an innovative solution to support maritime decarbonisation through the integration of a floating solar clean energy harnessing and wireless power transfer (WPT) technology for electric vessels. The paper presents the design and experimental tests of the integrated system specifically, based on a model of an electric yacht. This study provides an in-depth analysis of application of floating solar to provides an off-grid wireless power transfer system that can scale for larger vessels such as ferries. The off-grid modularity proposed enables scalable, flexible, and sustainable energy delivery for maritime applications and decarbonisation with specific attention to challenges in WPT alignment and environmental condition. Simulations using ANSYS Maxwell were performed to model the magnetic field interactions and ascertain the optimal power transfer efficiency. Subsequently, a reduced-scale prototype system was designed, built and tested in a wave tank. The experimental results demonstrated efficient wireless charging with an average efficiency of 82 %, and the docking system proved effective in maintaining alignment even when the ship has wave-induced motions. The findings support the feasibility of using floating solar WPT systems for maritime vessels and pave the way to larger-scale studies.Item Open Access Harnessing energy for wearables: a review of radio frequency energy harvesting technologies(MDPI, 2023-07-31) Nwalike, Ezekiel Darlington; Ibrahim, Khalifa Aliyu; Crawley, Fergus; Qin, Qing; Luk, Patrick; Luo, ZhenhuaWireless energy harvesting enables the conversion of ambient energy into electrical power for small wireless electronic devices. This technology offers numerous advantages, including availability, ease of implementation, wireless functionality, and cost-effectiveness. Radio frequency energy harvesting (RFEH) is a specific type of wireless energy harvesting that enables wireless power transfer by utilizing RF signals. RFEH holds immense potential for extending the lifespan of wireless sensors and wearable electronics that require low-power operation. However, despite significant advancements in RFEH technology for self-sustainable wearable devices, numerous challenges persist. This literature review focuses on three key areas: materials, antenna design, and power management, to delve into the research challenges of RFEH comprehensively. By providing an up-to-date review of research findings on RFEH, this review aims to shed light on the critical challenges, potential opportunities, and existing limitations. Moreover, it emphasizes the importance of further research and development in RFEH to advance its state-of-the-art and offer a vision for future trends in this technology.Item Open Access Piezoelectric energy harvester for harnessing rotational kinetic energy through linear energy conversion(MDPI, 2023-09-09) Abdulkhaliq, Habib Sadiq; Crawley, Fergus; Luk, Patrick; Luo, ZhenhuaReal-time condition monitoring of various types of machinery using sensor technology has gained significant importance in recent years. However, relying on batteries to power these sensors proves to be sub-optimal, as it necessitates regular charging or replacement. To address this, harvesting waste energy from ambient sources emerges as a more efficient alternative. Everyday applications like vehicle wheels, fans, and turbines present ambient sources of waste rotational energy. In this study, we propose a novel rotational energy harvester design that converts rotational energy into linear energy. This linear energy impacts a piezoelectric disk, generating an electric potential. Through simulations, the expected electric potential at varying frequencies was evaluated. Subsequently, experimental tests were conducted by connecting the harvester to a rectifier for AC-to-DC signal conversion and an oscilloscope for voltage measurement. A DC motor replicated the rotational motion at the frequencies from the simulation, and the power output was measured. Using the power transfer theorem, simulation and experimental power outputs were calculated, resulting in values of 188, 513, and 1293 μW and 88.89, 336, and 923 μW, respectively. These results reveal that the designed harvester is competitive with those of existing rotational energy harvester designs, demonstrating the promising potential of this novel harvester.