Browsing by Author "Lobato, Killian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Superior rate capability of high mass loading supercapacitors fabricated with carbon recovered from methane cracking(MDPI, 2023-07-27) Baptista, Joana; Shacklock, Jack; Shaban, Muhammad; Alkayal, Anas; Lobato, Killian; Wijayantha, Upul K. G.High mass loading (ca. 30 mg/cm2) electrodes were prepared with carbon recovered from catalytic methane cracking (MC). As-fabricated supercapacitors displayed 74% of capacitance retention from 6 mA/cm2 to 60 mA/cm2 and a Ragone plot’s slope of −7 Wh/kW (compared to 42% and −31 Wh/kW, respectively, for high mass loading devices fabricated with commercial carbon). The high-rate capability of the MC-recovered carbon is attributed to the presence of carbon black and carbon nanotubes produced during the reaction, which likely increased the electronic and ionic conductivity within the electrode. These results suggest that the by-product of this hydrogen generation route might be a suitable active material for supercapacitors.Item Open Access Temperature-dependent electrosynthesis of PEDOT:PSS: enhanced Na+ transfer targeting high-performance Na-ion batteries(Elsevier, 2025-04-01) Santos, Daniel R.; Zeferino, Jorge F.; Viana, Ana S.; Wijayantha, K. G. Upul; Lobato, Killian; Correia, Jorge P.Poly(3,4-ethylenedioxythiophene):Poly(sodium 4-styrenesulfonate) (PEDOT:PSS) is a versatile conducting polymer with physicochemical properties favourable for energy storage applications, such as chemical and mechanic stability and flexibility. However, the temperature at which the polymer is synthesised can significantly influence its properties. In this study, a detailed investigation of the effect of temperature on the electroactivity, morphology, optical properties, and ionic/solvent transport during the redox conversion of potentiostatically and galvanostatically synthesised films was conducted. Electrochemical data, supported by ellipsometry, atomic force microscopy, microgravimetry, and probe beam deflection measurements, revealed that films synthesised at lower temperatures (0 °C) were more compact compared to those synthesised at higher temperatures (40 °C). Films synthesised at 0 °C also exhibited near-ideal reversibility, with a QO/QR ratio of ca. 1. Importantly, the 0 °C films showed a strong pseudocationic doping behaviour, characterised by predominant sodium ion exchange during redox processes. In contrast, films synthesised at 40 °C exhibited mixed ion participation (both sodium and perchlorate), which could negatively impact the performance of electrode material in battery applications. This study demonstrates the potential of PEDOT:PSS as a versatile material for sodium ion cathodes, with properties that can be finely tuned through the synthesis temperature, yielding more compact ion-storage films at lower temperatures.