Browsing by Author "Liu, Yiding"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access 3D-printed thermoplastic composite fasteners for single lap joint reinforcement(Elsevier, 2021-12-10) Li, Wenhao; Guo, Shijun; Giannopoulos, Ioannis K.; Lin, Minxiao; Xiong, Yi; Liu, Yiding; Shen, ZhengquanThis study presents findings for the strength and failure mechanism of a 3D-printed Continuous Carbon Fibre reinforced Onyx (CCF/Onyx) Thermo-Plastic Composite Fastener (TPCF) and a single lap-joint (SLJ) made of fibre/polymer composite reinforced by the TPCF. The study was carried out by numerical analysis and experiment methods including test sample design, manufacturing process and mechanical test. The 3D-printed fasteners were manufactured and tested in shear mode for two types of joining arrangement: fastened and hybrid bonded/fastened joints. Firstly, experiment was carried out for the TPCF fastened SLJ and the results show that addition of CCF in the Onyx matrix and post heat-treatment process could significant enhance the TPCF strength. The results was then benchmarked against a SLJ with steel fastening. The shear failure load of the SLJ reinforced by heat-treated CCF/Onyx TPCF of 8mm diameter was 36% lower than a SLJ reinforced by a steel bolt of the same size. Numerical model for progressive damage simulation was also created based on the failure theory from Puck and Schürmann achieving good correlation with the experimental data. Secondly, the TPCF fasteners were manufactured with two types of heat-treated countersunk head and pan head forming and used to reinforce bonded SLJ. The test results show that the bonded SLJ reinforced by the TPCF fastener of countersunk head is of 11.7% higher strength and an increase in ultimate deformation by 9.1% compared to a bonded SLJ reinforced by steel fastener of 5mm diameter. From the numerical and experimental study, it was noted that this was attributed to countersunk configuration to reduce out-out-plane bending and provide better crack arresting for the joint bonding.Item Open Access Experimental and numerical study of process-induced defects and their effect on fatigue debonding in composite joints(Elsevier, 2019-03-22) Liu, Yiding; Zhang, Xiang; Lemanski, Stuart; Yazdani Nezhad, Hamed; Ayre, DavidLaboratory coupon joints for fatigue debonding tests usually have narrow width and a through-width initial disbond. However, realistic structural joints are much wider and may contain process-induced defects and accidental damage; both are much smaller than the joint width. Small and discrete damage may behave differently from the idealised through-width disbond crack. This has brought a question on whether the laboratory coupon joint can accurately represent the fatigue behaviour of wider structural joints. This paper presents an experimental and numerical study of fatigue behaviour of a wide bonded lap joint with a process-induced defect of semi-circular shape. Fatigue debonding propagation was monitored by ultrasound inspection. Fatigue life was predicted using a normalised strain energy release rate parameter calculated by finite element method, and the adhesive material fatigue crack growth rate data measured under single and mixed mode conditions. Simulation of process-induced defect and validation by experiments have brought a better understanding of fatigue debonding behaviour in wide joints containing realistic damage. Suggestions are given for fatigue fracture tests of bonded joints.Item Open Access A finite element model for predicting the static strength of a composite hybrid joint with reinforcement pins(MDPI, 2023-04-22) Bianchi, Francesco; Liu, Yiding; Joesbury, Adam M.; Ayre, David; Zhang, XiangThis paper presents a finite element model for predicting the performance and failure behaviour of a hybrid joint assembling fibrous composites to a metal part with reinforcement micro pins for enhancing the damage tolerance performance. A unit-strip model using the cohesive elements at the bond interface is employed to simulate the onset and propagation of debonding cracks. Two different traction–separation laws for the interface cohesive elements are employed, representing the fracture toughness properties of the plain adhesive bond and a pin-reinforced interface, respectively. This approach can account for the large-scale crack-bridging effect of the pins. It avoids using concentrated pin forces in the numerical model, thus removing mesh-size dependency, and permitting more accurate and robust computational analysis. Lap joints reinforced with various pin arrays were tested under quasi-static load. Predicted load versus applied displacement relations are in good agreement with the test results, especially for the debonding onset and early stage of crack propagation.Item Open Access A finite element study of fatigue crack propagation in single lap bonded joint with process-induced disbond(Elsevier, 2018-09-09) Liu, Yiding; Lemanski, Stuart; Zhang, Xiang; Ayre, David; Nezhad, Hamed YazdaniThis paper presents a method for predicting fatigue crack propagation in adhesive bonded composite joints with an initial full-width disbond using finite element analysis and numerical integration of the material's fatigue crack growth rate law. Fatigue tests were conducted on single lap joints. Crack lengths were monitored from four runout corners. In-situ crack growth measurements were performed by ink injection to identify the crack front profile during fatigue loading. The crack growth was modelled using a fracture mechanics criterion considering two different crack propagation patterns. The material's fatigue crack growth rate law was determined experimentally using the standard double cantilever beam and end notch flexure specimens. Using the total strain energy release rate and the two crack scenarios, the numerical model predicted the lower and upper bounds of the measured fatigue crack growth rates of the lap joint.Item Open Access Investigation of adhesive joining strategies for the application of a multi-material light rail vehicle(MDPI, 2021-11-18) Liu, Yiding; Carnegie, Craig; Ascroft, Helen; Li, Wenhao; Han, Xiao; Guo, Hua; Hughes, Darren J.To meet the high demand for lightweight energy-efficient and safe structures for transport applications, a current state-of-the-art light rail vehicle structure is under development that adopts a multi-material design strategy. This strategy creates the need for advanced multi-material joining technologies. The compatibility of the adhesive with a wide range of material types and the possibility of joining multi-material structures is also a key advantage to its success. In this paper, the feasibility of using either epoxy or polyurethane adhesive joining techniques applied to the multi-material vehicle structure is investigated. Importantly, consideration is given to the effect of variation in bond thickness for both families of structural adhesives. Multi-material adhesively bonded single lap joints with different adhesives of controlled bond thicknesses were manufactured and tested in order to experimentally assess the shear strength and stiffness. The torsional stiffness and natural frequency of the vehicle were modelled using a global two-dimensional finite element model (FEM) with different adhesive properties, and the obtained vehicle performances were further explained by the coupon-level experimental tests. The results showed that the vehicle using polyurethane adhesive with a target bond thickness of 1.0 mm allowed for optimal modal frequency and weight reduction.Item Open Access Strength enhancement of bonded composite laminate joints reinforced by composite pins(Elsevier, 2020-01-10) Li, Wenhao; Guo, Shijun; Giannopoulos, Ioannis K.; He, Shun; Liu, YidingThis paper presents an experimental and numerical investigation in the static strength enhancement of composite laminate Single Lap bonded Joints (SLJ), reinforced by pins made of Uni-Directional (UD) fibre reinforced plastic composite materials. Bonded lap joint specimens were experimentally tested in tension to obtain the failure loads and failure modes. The specimens were subsequently benchmarked against the hybrid version of the joint resulted from the introduction of composite Pins. The Pin reinforcement enhanced the hybrid single lap joint strength by an average of 19.1% increase. Numerical models generated were used for correlation with the experimental results. Numerical and experimental results observation indicated that increased strength of the hybrid bonded/Pinned joint was partly attributed to the load sharing between the adhesive and the Pin past the adhesive failure initiation as well as to the enhanced out-of-plane bending stiffness after the Pin introduction on the lap joint. Numerical investigations were performed as well with hybrid SLJ reinforced by composite pins versus designs employing metallic Pins. The simulations showed that for the investigated lap joint design parameters, the hybrid metallic pin joint failed at a higher failure load. Nevertheless, the hybrid joint utilizing the composite Pin could benefit from the enhanced corrosion resistance properties. In the case of applying a larger composite Pin diameter and/or rearranging the fibre orientation in the Pin, the hybrid SLJs could potentially achieve higher strength characteristics before the adhesive bond ultimate failure in relation to the steel Pin, as well as resulting to additional weight saving up to 46.9%.Item Open Access Structure health monitoring of composites joint reinforced by acoustic emission based smart composite fasteners(Elsevier, 2022-06-16) Li, Wenhao; Guo, Shijun; Liu, Yiding; Shen, Zhengquan; Xiong, Yi; Gao, Fei; Hughes, Darren J.; Lin, JingThis paper proposed an Acoustic Emission (AE) based Smart Composite Fastener (SCF) concept for health monitoring of bonded/bolted composite single lap joints. The SCF was made of 3D-printed continuous carbon fibre reinforced thermoplastic materials with an embedded piezoelectric sensor. The SCF detected signals were found to be successfully associated with AE damage sources during the loading period. It was discovered that the adhesive crack/delamination AE sources resulted in burst-type signals with identifiable onset and end, whereas AE sources of frictional sliding between the SCF and fastener holes resulted in continuous-type signals producing broad frequency content. Furthermore, the amplitudes of the burst-type signal measured from the network of SCFs were successfully correlated with the locations of the damages. In the direction away from the damage, the amplitudes of the burst-type voltages measured from the SCF showed a decreasing trend, with 10195mv, 9,995mv, and 7,426mv respectively. Generally, the research in this paper explores the correlation between the voltage signal from a damaged AE source and the SCF, providing the feasibility of using a novel SCF for health monitoring in composite joint structures.