CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Liu, Yanping"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Improving the biodegradability of rice straw by electrochemical pretreatment
    (Elsevier, 2022-08-23) Sun, Shaohua; Zhang, Yuanyuan; Yang, Zhaoyang; Liu, Chunmei; Zuo, Xiaoyu; Tang, Yang; Wan, Pingyu; Liu, Yanping; Li, Xiujin; Coulon, Frederic; Hu, Qing; Yang, Xiao Jin
    The efficacy of NaOH, alkaline hydrogen peroxide (NaOH-H2O2), electrochemically produced NaOH-H2O2 (eNaOH-H2O2) and electrohydrolysis (EH) pretreatments was investigated for anaerobic digestion of rice straw. The cumulative biogas production was enhanced by 8%, 22% and 14% in the NaOH-H2O2, eNaOH-H2O2 and EH relative to conventional NaOH pretreatment. The chemical and electrochemical pretreatments decreased the crystallinity of cellulose and created a porous surface vein. Electrochemical NaOH-H2O2 pretreatment is efficient to promote microbial degradation of lignocellulose for biogas production while the risks associated with the transportation and storage of H2O2 are avoided. EH reduces the pretreatment time significantly and is a promising approach for utilizing rice straw biomass to produce renewable energy.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    In situ nanoconfinement catalysis for highly efficient redox transformation
    (American Chemical Society, 2024-11-13) Chen, Yuhan; Tan, Jisheng; Chao, Jingbo; Zhang, Jingqi; Tang, Yang; Liu, Yanping; Hu, Qing; Coulon, Frederic; Yang, Xiao Jin
    The rapid reduction of Cr(VI) across a wide pH range, from acidic to alkaline pH conditions to stable Cr(III) species for efficient remediation of Cr(VI) pollution, has long been a challenge. Herein, we propose a new concept of in situ nanoconfinement catalysis (iNCC) for highly efficient remediation of Cr(VI) by growing nanosheets of in situ layered double hydroxide (iLDH) on the surface of Al-Mg-Fe alloy achieving chemical reduction rates of >99% in 1 min from pH 3 to 11 for 100 mg L-1 Cr(VI) with a rate constant of 201 h-1. In stark contrast, the reduction rate is less than 6% in 12 h with a rate constant of 0.77 h-1 for the pristine Al-Mg-Fe alloy. The ultrafast reduction of Cr(VI) is most likely attributed to the synergistic catalysis of Al12Mg17 and Al13Fe4 and nanoconfinement of MgAlFe-iLDH and superstable mineralization of Cr(III) by MgAlCrIII- and MgFeCrIII-iLDHs. This study demonstrates the potential of in situ nanoconfinement catalysis on redox transformation for environmental remediation.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback