CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Liu, Tianhao"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Deep learning-based trajectory planning and control for autonomous ground vehicle parking maneuver
    (IEEE, 2023-07-01) Chai, Runqi; Liu, Derong; Liu, Tianhao; Tsourdos, Antonios; Xia, Yuanqing; Chai, Senchun
    In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners—This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Progress on the ultrasonic testing and laser thermography techniques for NDT of tokamak plasma-facing components
    (Elsevier, 2019-06-24) Pei, Cuixiang; Liu, Haochen; Qiu, Jinxing; Liu, Tianhao; Chen, Zhenmao
    During manufacturing and operation, different kinds of defects, e.g., delamination or surface cracks, may be generated in the plasma-facing components (PFCs) of a Tokamak device. To ensure the safety of the PFCs, various kinds of nondestructive testing (NDT) techniques are needed for different defect and failure mode. This paper gives a review of the recently developed ultrasonic testing (UT) and laser thermography methods for inspection of the delamination and surface cracks in PFCs. For monoblock W/Cu PFCs of divertor, the bonding quality at both W-Cu and Cu-CuCrZr interfaces was qualified by using UT with a focus probe during manufacturing. A noncontact, coupling-free and flexible ultrasonic scanning testing system with use of an electromagnetic acoustic transducer and a robotic inspection manipulator was introduced then for the in-vessel inspection of delamination defect in first wall (FW). A laser infrared thermography testing method is highlighted for the on-line inspection of delamination defect in FW through the vacuum vessel window of the Tokamak reactor. Finally, a new laser spot thermography method using laser spot array source was described for the online inspection of the surface cracks in FW.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback