CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lin, Yufei"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A Bayesian approach to fault identification in the presence of multi-component degradation
    (PHM Society, 2017-03-10) Lin, Yufei; Zakwan, Skaf; Jennions, Ian K.
    Fault diagnosis typically consists of fault detection, isolation and identification. Fault detection and isolation determine the presence of a fault in a system and the location of the fault. Fault identification then aims at determining the severity level of the fault. In a practical sense, a fault is a conditional interruption of the system ability to achieve a required function under specified operating condition; degradation is the deviation of one or more characteristic parameters of the component from acceptable conditions and is often a main cause for fault generation. A fault occurs when the degradation exceeds an allowable threshold. From the point a new aircraft takes off for the first time all of its components start to degrade, and yet in almost all studies it is presumed that we can identify a single fault in isolation, i.e. without considering multi-component degradation in the system. This paper proposes a probabilistic framework to identify a single fault in an aircraft fuel system with consideration of multi-component degradation. Based on the conditional probabilities of sensor readings for a specific fault, a Bayesian method is presented to integrate distributed sensory information and calculate the likelihood of all possible fault severity levels. The proposed framework is implemented on an experimental aircraft fuel rig which illustrates the applicability of the proposed method.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    System diagnosis using a bayesian method
    (2017-09) Lin, Yufei; Jennions, Ian K.; Skaf, Zakwan
    Today’s engineering systems have become increasingly more complex. This makes fault diagnosis a more challenging task in industry and therefore a significant amount of research has been undertaken on developing fault diagnostic methodologies. So far there already exist a variety of diagnostic methods, from qualitative to quantitative. However, no methods have considered multi-component degradation when diagnosing faults at the system level. For example, from the point a new aircraft takes off for the first time all of its components start to degrade, and yet in previous studies it is presumed that apart from the faulty component, other components in the system are operating in a healthy state. This thesis makes a contribution through the development of an experimental fuel rig to produce high quality data of multi-component degradation and a probabilistic framework based on the Bayesian method to diagnose faults in a system with considering multi-component degradation. The proposed method is implemented on the fuel rig data which illustrates the applicability of the proposed method and the diagnostic results are compared with the neural network method in order to show the capabilities and imperfections of the proposed method.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback