Browsing by Author "Liagre, F."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access AGFORWARD Project Final Report(Cranfield University, 2018-02-28) Burgess, Paul; den Herder, M.; Dupraz, C.; Garnett, Kenisha; Giannitsopoulos, Michail; Graves, Anil; Hermansen, J. E.; Kanzler, M.; Liagre, F.; Mirck, J.; Moreno, G.; Mosquera-Losada, M. R.; Palma, João H. N.; Pantera, A.; Plieninger, T.Executive summary: The AGFORWARD project (Grant Agreement N° 613520) had the overall goal to promote agroforestry practices in Europe that will advance sustainable rural development. It had four objectives (described below) which address 1) the context and extent of agroforestry in Europe, 2) identifying, developing and field-testing agroforestry innovations through participatory networks, 3) evaluating innovative designs and practices at field-, farm-, and landscape-scales, and promoting agroforestry in Europe through policy development and dissemination. Agroforestry is defined as the practice of deliberately integrating woody vegetation (trees or shrubs) with crop and/or animal systems to benefit from the resulting ecological and economic interactions. Context: European agroforestry has been estimated to cover 10.6 Mha (using a literature review) and 15.4 Mha using the pan-European LUCAS dataset (i.e. 8.8% of the utilised agricultural area). Livestock agroforestry (15.1 Mha) is, by far, the dominant type of agroforestry. The LUCAS analysis provides a uniform method to compare agroforestry areas between countries and over time. Identify, develop and field-test agroforestry innovations: 40 stakeholder groups (involving about 820 stakeholders across 13 European countries) developed and field-tested agroforestry innovations which have been reported in 40 “lesson learnt” reports, and in a user-friendly format in 46 “Agroforestry innovation leaflets”. The innovations for agroforestry systems of high nature and cultural value included cheaper methods of tree protection and guidance for establishing legumes in wood pastures. Innovations for agroforestry with timber plantations, olive groves and apple orchards include the use of medicinal plants and reduction of mowing costs. Innovations for integrating trees on arable farms included assessments of yield benefits by providing wind protection. Innovations for livestock farms included using trees to enhance animal welfare, shade protection, and as a source of fodder. Peer-reviewed journal papers and conference presentations on these and other related topics were developed. Evaluation of agroforestry designs and practices at field- and landscape-scale: a range of publicly available field-scale analysis tools are available on the AGFORWARD website. These include the “CliPick” climate database, and web-applications of the Farm-SAFE and Hi-sAFe model. The results of field- and landscape-scale analysis, written up as peer-reviewed papers, highlight the benefits of agroforestry (relative to agriculture) for biodiversity enhancement and providing regulating ecosystem services, such as for climate and water regulation and purification. Policy development and dissemination: detailed reviews of existing policy and recommendations for future European agroforestry policy have been produced. The support provided is far wider than the single specified agroforestry measures. The recommendations included the collation of existing measures, and that agroforestry systems should not forfeit Pillar I payments. Opportunities for farmlevel and landscape-level measures were also identified. The project results can be found on the project website (www.agforward.eu), a Facebook account (www.facebook.com/AgforwardProject), a Twitter account (https://twitter.com/AGFORWARD_EU), and a quarterly electronic newsletter (http://www.agforward.eu/index.php/en/newsletters-1514.html). The number of national associations in Europe was extended to twelve, and a web-based training resource on agroforestry (http://train.agforward.eu/language/en/agforall/) created. AGFORWARD also supported the Third European Agroforestry Conference in Montpellier in 2016 attracting 287 delegates from 26 countries including many farmers. We also initiated another 21 national conferences or conference sessions on agroforestry, made about 240 oral presentations, 61 poster presentations, produced about 50 news articles, and supported about 87 workshop, training or field-visit activities (in addition to the stakeholder groups).Item Open Access AGFORWARD Third Periodic Report: July 2016 to December 2017(Cranfield University, 2018-03-01) Burgess, Paul; den Herder, M.; Dupraz, C.; Garnett, Kenisha; Giannitsopoulos, Michail; Graves, Anil; Hermansen, J. E.; Kanzler, M.; Liagre, F.; Moreno, G.; Mosquera-Losada, M. R.; Palma, João H. N.; Pantera, A.; Plieninger, T.Project context The European Union has targets to improve the competitiveness of European agriculture and forestry, whilst improving the environment and the quality of rural life. At the same time there is a need to improve our resilience to climate change and to enhance biodiversity. During the twentieth century, large productivity advances were made by managing agriculture and forestry as separate practices, but often at a high environmental cost. In order to address landscape-scale issues such as biodiversity and water quality, we argue that farmers and society will benefit from considering landuse as a continuum including both agriculture and trees, and that there are significant opportunities for European farmers and society to benefit from a closer integration of trees with agriculture. Agroforestry is the practice of deliberately integrating woody vegetation (trees or shrubs) with crop and/or animal systems to benefit from the resulting ecological and economic interactions.Item Open Access Development and application of bio-economic modelling to compare silvoarable, arable, and forestry systems in three European countries.(Elsevier Science B.V., Amsterdam., 2007-04-01T00:00:00Z) Graves, Anil R.; Burgess, Paul J.; Palma, João H. N.; Herzog, F.; Moreno, G.; Bertomeu, M.; Dupraz, Christian; Liagre, F.; Keesman, Karel; van der Werf, Wopke; Koeffeman, de Nooy A.; van den Briel, J. P.Silvoarable agroforestry could promote use of trees on farms in Europe, but its likely effect on production, farm profitability, and environmental services is poorly understood. Hence, from 2001 to 2005, the Silvoarable Agroforestry for Europe project developed a systematic process to evaluate the biophysical and economic performance of arable, forestry, and silvoarable systems in Spain, France, and The Netherlands. A biophysical model called “Yield-SAFE” was developed to predict long-term yields for the different systems and local statistics and expert opinion were used to derive their revenue, costs, and pre- and post-2005 grant regimes. These data were then used in an economic model called “Farm-SAFE” to predict plot- and farm-scale profitability. Land equivalent ratios were greater than one, showing Yield-SAFE predicted that growing trees and crops in silvoarable systems was more productive than growing them separately. Pre-2005 grants in Spain and The Netherlands penalised silvoarable systems, but post-2005 grants were more equitable. In France, walnut and poplar silvoarable systems were consistently the most profitable system under both grant regimes. In Spain, holm oak and stone pine silvoarable systems were the least profitable system under pre-2005 grants, but only marginally less profitable than arable systems under post-2005 grants. In The Netherlands, low timber values and the opportunity cost of losing arable land for slurry manure application made silvoarable and forestry systems uncompetitive with arable systems under both grantItem Open Access Farm-SAFE: The process of developing a plot- and farm-scale model of arable, forestry, and silvoarable economics(Springer Science Business Media, 2011-02-01T00:00:00Z) Graves, Anil R.; Burgess, Paul J.; Liagre, F.; Terreaux, J.-P.; Borrel, T.; Dupraz, Christian; Palma, João H. N.; Herzog, F.Financial feasibility and financial return are two key issues that farmers and land owners consider when deciding between alternative land uses such as arable farming, forestry and agroforestry. Moreover regional variations in yields, prices and government grants mean that the relative revenue and cost of such systems can vary substantially within Europe. To aid our understanding of these variations, the European Commission sponsored a research project called “Silvoarable Agroforestry For Europe” (SAFE). This paper describes the process of developing a new economic model within that project. The initial stages included establishing criteria for the model with end-users and reviewing the literature and existing models. This indicated that the economic model needed to allow comparison of arable farming, forestry and agroforestry systems at a plot- and a farm-scale. The form of comparisons included net margins, net present values, infinite net present values, equivalent annual values, and labour requirements. It was decided that the model would operate in a spreadsheet format, and the effect of phased planting patterns would be included at a farm- scale. Following initial development, additional user feedback led to a final choice on a model name, a final method of collating input data, and the inclusion of field-based operations such as varying the cropped area, replacing dead trees, and pruning. In addition options in terms of improved graphical outputs and the ability to undertake sensitivity analysis were developed. Some of the key lessons learnt include the need to establish clear model criteria and the benefits of developing a working prototype at an early stage to gain user- feedbItem Open Access Farmer perception of benefits, constraints and opportunities for silvoarable systems: preliminary insights from Bedfordshire, England(Sage, 2017-03-01) Graves, Anil R.; Burgess, Paul J.; Liagre, F.; Dupraz, C.Silvoarable agroforestry integrates the use of trees and arable crops on the same area of land, and such systems can be supported by national governments under the European Union’s (EU) Rural Development Regulations (2014–2020). In order to improve the understanding of farmers’ perceptions of such systems, detailed face-to-face interviews were completed with 15 farmers in Bedfordshire, England. Most of these farmers thought that silvoarable systems would not be profitable on their farms and that benefits would tend to be environmental or social rather than economic. Most farmers also thought that management and use of machinery would become more difficult. They felt that the tree component could potentially disrupt field operations and drainage and expressed concerns over the uncertain and long-term nature of timber revenue and the effect of intercrop yield reductions on crop revenue. Even so, 20% of the farmers stated they would use silvoarable systems if convinced that they were more profitable than conventional arable farming. A further 20% said they would farm the intercrop area belonging to someone else, if the rent was reduced to compensate for crop yield reductions. These results suggest that for most arable farmers, an economic advantage over current practice needs to exist before silvoarable systems are likely to be adopted. However, a minority might rent the crop component of a silvoarable system from another party or implement a full system for perceived environmental or social benefits.Item Open Access Modeling environmental benefits of silvoarable agroforestry in Europe.(Elsevier Science B.V., Amsterdam., 2007-03-01T00:00:00Z) Palma, João H. N.; Graves, Anil R.; Bunce, R. G. H.; Burgess, Paul J.; de Filippi, R.; Keesman, K. J.; van Keulen, Herman; Liagre, F.; Mayus, Martina; Moreno, G.; Reisner, Y.; Herzog, F.Increased adoption of silvoarable agroforestry (SAF) systems in Europe, by integrating trees and arable crops on the same land, could offer a range of environmental benefits compared with conventional agricultural systems. Soil erosion, nitrogen leaching, carbon sequestration and landscape biodiversity were chosen as indicators to assess a stratified random sample of 19 landscape test sites in the Mediterranean and Atlantic regions of Europe. At each site, the effect of introducing agroforestry was examined at plot-scale by simulating the growth of one of five tree species (hybrid walnut Juglans spp., wild cherry Prunus avium L., poplar Populus spp., holm oak Quercus ilex L. subsp. ilex and stone pine Pinus pinea L.) at two tree densities (50 and 113 trees ha−1) in combination with up to five crops (wheat Triticum spp., sunflower Helianthus annuus L., oilseed rape Brassica napus L., grain maize and silage maize Zea mays L.). At landscape-scale, the effect of introducing agroforestry on 10 or 50% of the agricultural area, on either the best or worst quality land, was examined. Across the 19 landscape test sites, SAF had a positive impact on the four indicators with the strongest effects when introduced on the best quality land. The computer simulations showed that SAF could significantly reduce erosion by up to 65% when combined with contouring practices at medium (>0.5 and <3 t ha−1 a−1) and high (>3 t ha−1 a−1) erosion sites. Nitrogen leaching could be reduced by up to 28% in areas where leaching is currently estimated high (>100 kg N h−1 a−1), but this was dependent on tree density. With agroforestry, predicted mean carbon sequestration through immobilization in trees, over a 60-year period, ranged from 0.1 to 3.0 t C h−1 a−1 (5–179 t C h−1) depending on tree species and location. Landscape biodiversity was increased by introducing SAF by an average factor of 2.6. The implications of this potential for environmental benefits at Europea