CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Zhiyong"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Additively manufactured aluminium nested composite hybrid rocket fuel grainswith breathable blades
    (Taylor & Francis, 2023-08-18) Qu, Dandan; Lin, Xin; Zhang, Kun; Li, Zhiyong; Wang, Zezhong; Liu, Guoliang; Meng, Yang; Luo, Gengxing; Wang, Ruoyan; Yu, Xilong
    Hybrid rocket engines suffer from the restricted mechanical properties and low regression rates of current polymeric fuel grains. We propose a three-dimensional printed aluminium (Al) nested composite fuel grain with millimetre-scale lattice pores (referred to as Al-L). In this study, breathable Al blades with micrometer-scale interconnected pores (Al-B) and blades combining millimetre-scale and micrometer-scale pores (Al-B&L) are designed. The formation mechanisms, characteristics, and effects of the breathable blades are analysed in simulations, micro-computed tomography, and cyclic compression tests. The mechanical properties of the composite fuel grains are investigated numerically and in compression tests. Al-B has the highest Young’s modulus at more than 15 times that of a paraffin-based fuel grain and Al-B&L has the highest yield stress at 4 times that of the paraffin-based fuel grain. Referring to combustion properties, the regression rates of the Al-B and Al-B&L grains are respectively 63.3% and 58.2% greater than the regression rate of the paraffin-based fuel grain.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Characterising and modelling plasma transferred arc for additive manufacturing
    (Elsevier, 2025-05-15) Chen, Guangyu; Sun, Yongle; Wang, Chong; Ding, Jialuo; Suder, Wojciech; Li, Zhiyong; Williams, Stewart W.
    The thermal characteristics of a plasma transferred arc (PTA) and its mathematical representation are primary considerations when designing and modelling PTA-based wire arc additive manufacturing (WAAM). However, most of the currently used PTA thermal characteristics are derived from welding processes, which are not directly applicable to WAAM. In this study, the power density distribution, arc diameter and arc efficiency of PTA in the WAAM process were measured using the split anode calorimetry (SAC) method. The effects of key process parameters, including current intensity, plasma gas composition, plasma gas flow rate, and arc length, on the PTA power profile were systematically examined. The results show that for a typical PTA used in WAAM, the arc diameter ranged from 9.6 mm to 10.8 mm, with an arc efficiency of approximately 60 % within the tested parameter range. The PTA power becomes more concentrated as power density increases with higher current intensity and plasma gas flow rates. Additionally, a softer plasma was achieved by increasing helium content in the plasma gas or by using a longer nozzle-to-workpiece standoff distance, both of which are beneficial for avoiding keyhole defects. To accurately represent PTA power distribution, a binomial Gaussian heat source model was proposed, which captures the details of the arc power profile with a high accuracy of over 99.94 %, outperforming the conventional monomial Gaussian heat source model. The PTA calorimetry characterisation and the proposed binomial Gaussian model can be useful in establishing a better understanding of the PTA power profile and enhancing process control for high-precision WAAM.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impact of sulfur content on thermo-capillarity and melt pool dynamics in laser powder bed fusion of 316L powders
    (IOP Publishing, 2023-12-05) Li, Zhiyong; Kan, Xinfeng; Yin, Yanjun
    Athree-dimensional numerical model is developed to investigate the influence of sulfur content on the transitions of thermo-capillarity and flow dynamics during laser powder bed fusion (LPBF) of 316L powders. The impacts of variations in sulfur contents on thermal behaviors involving heat transfer and solidification characteristics, thermo-capillarity transition, as well as the spatial and directional transitions in flow dynamics, are analyzed through mechanistic modeling techniques. It is observed that transient thermal behaviors, including melt pool profile, track morphology, and solidification processes, are significantly influenced by the contained sulfur concentration. High sulfur concentrations tend to result in finer microstructures and equiaxed grains. Through simulations, it is noted that the transition in the sign of temperature coefficient of surface tension (TCST) is more easily observable in low-sulfur level but disappears as the sulfur concentration is extremely low (0.0001%) With sulfur content increasing, a more homogenized velocity distribution is observed, accompanied with heightened flow complexity denoted by the emergence of additional branch flows and vortices. These findings offer valuable insights into the underlying physics of melt pool dynamics in the LPBF process and present a potential approach for process optimization.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modelling trust evolution within small business lending relationships
    (Springer, 2018-09-01) Tang, Ying; Moro, Andrea; Sozzo, Sandro; Li, Zhiyong
    Trust is a key dimension in the principal-agent relationship and it has been studied extensively. However, the dynamics, evolution, and intrinsic motivation and mechanisms have received less attention. This paper investigates the intrinsic motivation of trust and it proposes a theoretical model of trust evolution that is based on the notion of ‘trust response’ and ‘trust spiral’. We then specifically focus on trust within the lending relationship between banks and small businesses, and we run numerical simulations to further illustrate the evolution of involved mutual trust over time. Our model provides implications for future research in both trust evolution and small business lending relationships.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Vapor-induced flow and its impact on powder entrainment in laser powder bed fusion
    (Elsevier, 2023-07-16) Li, Zhiyong; Yu, Gang; He, Xiuli; Gan, Zhengtao; Liu, Wing Kam
    A 2D axisymmetric transient Thermal-Fluid-Evaporation model coupled with melt pool dynamics and gas kinetics is developed to study the formation mechanisms of vapor-induced flow and the resulting powder entrainment in powder bed fusion using laser beam (PBF-LB) for 316 L powders. The interactions between keyhole formation inside the melt pool, vapor plume flow, and vapor-induced shielding gas flow are investigated. Vapor plume flow results in powder spattering with much higher speed, while vapor-induced gas flow significantly contributes to powder denudation with lower speed. It is also reported that powder spattering is stronger in 1 atm argon than that in 1 atm helium because the drag force for spattering is 2.72 times larger in 1 atm argon, but powder denudation becomes greater in 1 atm helium as the ratio of drag force for denudation in 1 atm argon to that in 1 atm helium is only 0.582. Furthermore, the vapor plume results in more spatters with the decrease of ambient pressure from 1 atm to 0.05 atm in argon because the plume is diluted faster with a twofold wider plume head and the two times higher peak velocity as a result of the pressure drop-induced significant reduction of viscosity restriction. A larger divergency angle in 0.05 atm argon is also recorded at the same time for the weaker restriction and faster dilusiton. In combination with in-situ observations, the proposed model provides insights into the vapor-induced flow, and its impact on powder entrainment under different gas types and ambient pressures.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback