CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Li, Peng"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Customizable fabrication for auxetic graphene assembled macrofilms with high conductivity and flexibility
    (Elsevier, 2020-02-25) Li, Peng; Wang, Zhe; Song, Rongguo; Qian, Wei; Wen, Pin; Yang, Zhugen; He, Daping
    Auxetic materials with negative Poisson's ratios unusually exhibit intuitive mechanical behaviors, such as cross-section expansion instead of contraction during tension. Such behaviors are interesting because they may enhance unusual mechanical properties. However, controllable preparation of materials with negative Poisson's ratio is still a major challenge. In this study, we report the synthesis of a flexible auxetic graphene assembled macrofilm (GAMF) from graphene oxide nanosheets by a thermal annealing and press assistant method. The obtained materials exhibit good flexibility and significantly wide tunable negative Poisson's ratios ranging from −0.11 to −0.53. We also develop a reconstruction model for characterization the uniaxial tension of GAMF based on X-ray tomographic images. The tensile simulation result predicts the function relationship between Poisson's ratio and critical thickness of pore channels, which is in good agreement with the experimental data. As a result, an effective tunable way is proposed for customizable fabrication of GAMF with tunable negative Poisson's ratios, and the GAMF materials with good flexibility, high electrical conductivity and superior auxetic behavior looks promising for future development of wearable electronics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The role of wrist-worn technology in the management of Parkinson’s disease in daily life: a narrative review
    (Frontiers, 2023-04-12) Li, Peng; van Wezel, Richard; He, Fei; Zhao, Yifan; Wang, Ying
    Parkinson’s disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Its slow and heterogeneous progression over time makes timely diagnosis challenging. Wrist-worn digital devices, particularly smartwatches, are currently the most popular tools in the PD research field due to their convenience for long-term daily life monitoring. While wrist-worn sensing devices have garnered significant interest, their value for daily practice is still unclear. In this narrative review, we survey demographic, clinical and technological information from 39 articles across four public databases. Wrist-worn technology mainly monitors motor symptoms and sleep disorders of patients in daily life. We find that accelerometers are the most commonly used sensors to measure the movement of people living with PD. There are few studies on monitoring the disease progression compared to symptom classification. We conclude that wrist-worn sensing technology might be useful to assist in the management of PD through an automatic assessment based on patient-provided daily living information.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Well-structured 3D channels within GO-based membranes enable ultrafast wastewater treatment
    (Springer, 2022-09-03) Fu, Huaqiang; Wang, Zhe; Li, Peng; Qian, Wei; Zhang, Zixin; Zhao, Xin; Feng, Hao; Yang, Zhugen; Kou, Zongkui; He, Daping
    Graphene oxide (GO)-based membranes have been widely studied for realizing efficient wastewater treatment, due to their easily functionalizeable surfaces and tunable interlayer structures. However, the irregular structure of water channels within GO-based membrane has largely confined water permeance and prevented the simultaneously improvement of purification performance. Herein, we purposely construct the well-structured three-dimensional (3D) water channels featuring regular and negatively-charged properties in the GO/SiO2 composite membrane via in situ close-packing assembly of SiO2 nanoparticles onto GO nanosheets. Such regular 3D channels can improve the water permeance to a record-high value of 33,431.5 ± 559.9 L·m−2·h−1 (LMH) bar−1, which is several-fold higher than those of current state-of-the-art GO-based membranes. We further demonstrate that benefiting from negative charges on both GO and SiO2, these negatively-charged 3D channels enable the charge selectivity well toward dye in wastewater where the rejection for positive-charged and negative-charged dye molecules is 99.6% vs. 7.2%, respectively. The 3D channels can also accelerate oil/water (O/W) separation process, in which the O/W permeance and oil rejection can reach 19,589.2 ± 1,189.7 LMH bar−1 and 98.2%, respectively. The present work unveils the positive role of well-structured 3D channels on synchronizing the remarkable improvement of both water permeance and purification performance for highly efficient wastewater treatment.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback